99 research outputs found

    Isolation and gene analysis of interferon α-resistant cell clones of the hepatitis C virus subgenome

    Get PDF
    AbstractHepatitis C virus (HCV) proteins appear to play an important role in IFN-resistance, but the molecular mechanism remains unclear. To clarify the mechanism in HCV replicon RNA harboring Huh-7 cells (Huh-9-13), we isolated cellular clones with impaired IFNα-sensitivity. Huh-9-13 was cultured for approximately 2 months in the presence of IFNα, and 4 IFNα-resistant cell clones showing significant resistances were obtained. When total RNA from clones was introduced into Huh-7 cells, the transfected cells also exhibited IFNα-resistance. Although no common mutations were present, mutations in NS3 and NS5A regions were accumulated. Transactivation of IFNα and IFNα-stimulated Stat-1 phosphorylation were reduced, and the elimination of HCV replicon RNA from the clones restored the IFNα signaling. These results suggest that the mutations in the HCV replicon RNA, at least in part, cause an inhibition of IFN signaling and are important for acquisition of IFNα resistance in Huh-9-13

    Suppression of Hepatitis C Virus Core Protein by Short Hairpin RNA Expression Vectors in the Core Protein Expression HUH-7 Cells

    Get PDF
    Short hairpin RNAs (shRNAs) efficiently inhibit gene expression by RNA interference. Here, we report the efficient inhibition by DNA-based vector-derived shRNAs of core protein expression in Huh-7 cells. The shRNAs were designed to target the core region of the hepatitis C virus (HCV) genome. The core region is the most conserved region in the HCV genome, making it an ideal target for shRNAs. We identified an effective site on the core region for suppression of the HCV core protein. The HCV core protein in core protein-expressing Huh-7 cells was downregulated by core protein-shRNA expression vectors (core-shRNA-452, 479, and 503). Our results support the feasibility of using shRNA-based gene therapy to inhibit HCV core protein production

    Up-regulation of hepatitis C virus replication by human T cell leukemia virus type I-encoded Tax protein

    Get PDF
    AbstractCo-infection of hepatitis C virus (HCV) with other blood-borne pathogens such as human T cell leukemia virus (HTLV) is common in highly endemic areas. Clinical evidence showing a correlation between HTLV-I co-infection and rapid progression of HCV-associated liver disease promoted us to investigate the effect of HTLV-I-encoded Tax protein on HCV replication. Reporter assay showed that HCV replicon-encoded luciferase expression was significantly augmented by co-transfection of the Tax-expressing plasmid. Further, HCV RNA replication in replicon cells was increased either by co-culture with cells stably expressing Tax protein (Huhtax) or by culture in the presence of Huhtax-conditioned medium, indicating that Tax could also modulate HCV replication of adjacent cells in a paracrine manner. Additionally, HCV replication in Huhtax exhibited a reduced responsiveness to interferon-α-induced antiviral activity. This study demonstrates the facilitation of HCV replication by Tax protein, which may partially account for severer clinical consequences of HCV-related disease in HCV/HTLV co-infected individuals

    Neutralization of hepatitis B virus with vaccine-escape mutations by hepatitis B vaccine with large-HBs antigen

    Get PDF
    優れたB型肝炎予防ワクチン開発に成功 --既存ワクチンの弱点克服へ--. 京都大学プレスリリース. 2022-09-07.Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes

    The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families

    Get PDF
    Chronic hepatitis C (CH) can develop into liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Liver fibrosis and HCC development are strongly correlated, but there is no effective treatment against fibrosis because the critical mechanism of progression of liver fibrosis is not fully understood. microRNAs (miRNAs) are now essential to the molecular mechanisms of several biological processes. In order to clarify how the aberrant expression of miRNAs participates in development of the liver fibrosis, we analyzed the liver fibrosis in mouse liver fibrosis model and human clinical samples

    PML tumor suppressor protein is required for HCV production

    Get PDF
    PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production

    Development of Mouse Hepatocyte Lines Permissive for Hepatitis C Virus (HCV)

    Get PDF
    The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications

    Hepatic microRNA expression is associated with the response to interferon treatment of chronic hepatitis C

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV infection frequently induces chronic liver diseases. The current standard treatment for chronic hepatitis (CH) C combines pegylated interferon (IFN) and ribavirin, and is less than ideal due to undesirable effects. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that control gene expression by degrading or suppressing the translation of target mRNAs. In this study we administered the standard combination treatment to CHC patients. We then examined their miRNA expression profiles in order to identify the miRNAs that were associated with each patient's drug response.</p> <p>Methods</p> <p>99 CHC patients with no anti-viral therapy history were enrolled. The expression level of 470 mature miRNAs found their biopsy specimen, obtained prior to the combination therapy, were quantified using microarray analysis. The miRNA expression pattern was classified based on the final virological response to the combination therapy. Monte Carlo Cross Validation (MCCV) was used to validate the outcome of the prediction based on the miRNA expression profile.</p> <p>Results</p> <p>We found that the expression level of 9 miRNAs were significantly different in the sustained virological response (SVR) and non-responder (NR) groups. MCCV revealed an accuracy, sensitivity, and specificity of 70.5%, 76.5% and 63.3% in SVR and non-SVR and 70.0%, 67.5%, and 73.7% in relapse (R) and NR, respectively.</p> <p>Conclusions</p> <p>The hepatic miRNA expression pattern that exists in CHC patients before combination therapy is associated with their therapeutic outcome. This information can be utilized as a novel biomarker to predict drug response and can also be applied to developing novel anti-viral therapy for CHC patients.</p

    Dysregulation of IFN System Can Lead to Poor Response to Pegylated Interferon and Ribavirin Therapy in Chronic Hepatitis C

    Get PDF
    Despite being expensive, the standard combination of pegylated interferon (Peg-IFN)- α and ribavirin used to treat chronic hepatitis C (CH) results in a moderate clearance rate and a plethora of side effects. This makes it necessary to predict patient outcome so as to improve the accuracy of treatment. Although the antiviral mechanism of genetically altered IL28B is unknown, IL28B polymorphism is considered a good predictor of IFN combination treatment outcome

    Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B

    Get PDF
    BACKGROUND: Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology
    corecore