185 research outputs found

    Mirror Adaptation in Sensory-Motor Simultaneity

    Get PDF
    Background: When one watches a sports game, one may feel her/his own muscles moving in synchrony with the player's. Such parallels between observed actions of others and one's own has been well supported in the latest progress in neuroscience, and coined “mirror system.” It is likely that due to such phenomena, we are able to learn motor skills just by observing an expert's performance. Yet it is unknown whether such indirect learning occurs only at higher cognitive levels, or also at basic sensorimotor levels where sensorimotor delay is compensated and the timing of sensory feedback is constantly calibrated. Methodology/Principal Findings: Here, we show that the subject's passive observation of an actor manipulating a computer mouse with delayed auditory feedback led to shifts in subjective simultaneity of self mouse manipulation and auditory stimulus in the observing subjects. Likewise, self adaptation to the delayed feedback modulated the simultaneity judgment of the other subjects manipulating a mouse and an auditory stimulus. Meanwhile, subjective simultaneity of a simple visual disc and the auditory stimulus (flash test) was not affected by observation of an actor nor self-adaptation. Conclusions/Significance: The lack of shift in the flash test for both conditions indicates that the recalibration transfer is specific to the action domain, and is not due to a general sensory adaptation. This points to the involvement of a system for the temporal monitoring of actions, one that processes both one's own actions and those of others

    The Dry Matter Yield and Nutritive Value of Wet Tolerant Tropical Forage Legumes in Single Cropping or Mixed Cropping with Gramineous Forage Crops in Drained Paddy Field

    Get PDF
    In Japan the production of rice has been controlled since the 1970\u27s and some parts of the paddy fields have been laid off for forage production. However, in poorly-drained fields or fields with high ground water table, forage species with high tolerance of wet conditions are required. The tropical forage legumes Aeschynomene americana cv. Glenn (Glenn) and Macroptilium lathyroides (L.) Urb. cv. Murray (phasey bean) have a high wet endurance (Bishop et al., 1985; Tobisa et al., 1999) and show high dry matter productivity (Skerman et al., 1988; Tobisa et al., 1999). The objective of this experiment was to evaluate the dry matter yield and nutritive value of Glenn and phasey bean in single cropping or mixed cropping with gramineous forage crops in drained paddy fields

    Root Distribution and Nitrogen Fixation Activity of Tropical Forage Legume American Jointvetch ( Aeschynomene americana

    Get PDF
    We investigated the root distribution and nitrogen fixation activity of American jointvetch (Aeschynomene americana L.) cv. Glenn, under waterlogging treatment. The plants were grown in pots under three different treatments: no waterlogging (control), 30 days of waterlogging (experiment 1), and 40 days of waterlogging (experiment 2). The plants were subjected to the treatments on day 14 after germination. Root dry matter (DM) weight distribution of waterlogged plants was shallower than controls after day 20 of waterlogging. Throughout the study period, the total root DM weight in waterlogged plants was similar to that in the controls. Enhanced rooting (adventitious roots) and nodule formation at the stem base were observed in waterlogged plants after day 20 of waterlogging. The average DM weight of individual nodules on the region of the stem between the soil surface and water surface of waterlogged plants was similar to that of individual taproot nodules in the controls. Waterlogged plants had slightly greater plant DM weight than the controls after 40 days of treatment. The total nitrogenase activity (TNA) of nodules and nodule DM weight were higher in waterlogged plants than in the controls. Waterlogged American jointvetch had roots with nodules both around the soil surface and in the area between the soil surface and water surface after 20 days of waterlogging, and they maintained high nitrogenase activity and net assimilation rate that resulted in an increased growth rate

    Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

    Get PDF
    The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR) silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM) was ensiled with four different treatments: no additive (control), molasses (M), propionic acid (P), and molasses+propionic acid (PM), in laboratory silos (250 mL) and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN), and high lactic acid (LA) content and V-scores. M silage showed the highest (p105 cfu/g FM), however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (<105 cfu/g FM) (p<0.05) and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage

    Exponential Function, Bondi K–Factor and Imaginary Unit

    No full text
    • …
    corecore