67 research outputs found

    Implicit neural representations for joint decomposition and registration of gene expression images in the marmoset brain

    Full text link
    We propose a novel image registration method based on implicit neural representations that addresses the challenging problem of registering a pair of brain images with similar anatomical structures, but where one image contains additional features or artifacts that are not present in the other image. To demonstrate its effectiveness, we use 2D microscopy in situ\textit{in situ} hybridization gene expression images of the marmoset brain. Accurately quantifying gene expression requires image registration to a brain template, which is difficult due to the diversity of patterns causing variations in visible anatomical brain structures. Our approach uses implicit networks in combination with an image exclusion loss to jointly perform the registration and decompose the image into a support and residual image. The support image aligns well with the template, while the residual image captures individual image characteristics that diverge from the template. In experiments, our method provided excellent results and outperformed other registration techniques.Comment: 11 page

    Mouse in Utero Electroporation: Controlled Spatiotemporal Gene Transfection

    Get PDF
    In order to understand the function of genes expressed in specific region of the developing brain, including signaling molecules and axon guidance molecules, local gene transfer or knock- out is required. Gene targeting knock-in or knock-out into local regions is possible to perform with combination with a specific CRE line, which is laborious, costly, and time consuming. Therefore, a simple transfection method, an in utero electroporation technique, which can be performed with short time, will be handy to test the possible function of candidate genes prior to the generation of transgenic animals 1,2. In addition to this, in utero electroporation targets areas of the brain where no specific CRE line exists, and will limit embryonic lethality 3,4. Here, we present a method of in utero electroporation combining two different types of electrodes for simple and convenient gene transfer into target areas of the developing brain. First, a unique holding method of embryos using an optic fiber optic light cable will make small embryos (from E9.5) visible for targeted DNA solution injection into ventricles and needle type electrodes insertion to the targeted brain area 5,6. The patterning of the brain such as cortical area occur at early embryonic stage, therefore, these early electroporation from E9.5 make a big contribution to understand entire area patterning event. Second, the precise shape of a capillary prevents uterine damage by making holes by insertion of the capillary. Furthermore, the precise shape of the needle electrodes are created with tungsten and platinum wire and sharpened using sand paper and insulated with nail polish 7, a method which is described in great detail in this protocol. This unique technique allows transfection of plasmid DNA into restricted areas of the brain and will enable small embryos to be electroporated. This will help to, open a new window for many scientists who are working on cell differentiation, cell migration, axon guidance in very early embryonic stage. Moreover, this technique will allow scientists to transfect plasmid DNA into deep parts of the developing brain such as thalamus and hypothalamus, where not many region-specific CRE lines exist for gain of function (GOF) or loss of function (LOF) analyses

    Hornerin deposits in neuronal intranuclear inclusion disease : direct identification of proteins with compositionally biased regions in inclusions

    Get PDF
    Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder, characterized by the presence of eosinophilic inclusions (NIIs) within nuclei of central and peripheral nervous system cells. This study aims to identify the components of NIIs, which have been difficult to analyze directly due to their insolubility. In order to establish a method to directly identify the components of NIIs, we first analyzed the huntingtin inclusion-rich fraction obtained from the brains of Huntington disease model mice. Although the sequence with expanded polyglutamine could not be identified by liquid-chromatography mass spectrometry, amino acid analysis revealed that glutamine of the huntingtin inclusion-rich fraction increased significantly. This is compatible with the calculated amino acid content of the transgene product. Therefore, we applied this method to analyze the NIIs of diseased human brains, which may have proteins with compositionally biased regions, and identified a serine-rich protein called hornerin. Since the analyzed NII-rich fraction was also serine-rich, we suggested hornerin as a major component of the NIIs. A specific distribution of hornerin in NIID was also investigated by Matrix-assisted laser desorption/ionization imaging mass spectrometry and immunofluorescence. Finally, we confirmed a variant of hornerin by whole-exome sequencing and DNA sequencing. This study suggests that hornerin may be related to the pathological process of this NIID, and the direct analysis of NIIs, especially by amino acid analysis using the NII-rich fractions, would contribute to a deeper understanding of the disease pathogenesis.Peer reviewe

    Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9

    Get PDF
    Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development

    Cdh23 and Prepulse Inhibition

    Get PDF
    We previously identified quantitative trait loci (QTL) for prepulse inhibition (PPI), an endophenotype of schizophrenia, on mouse chromosome 10 and reported Fabp7 as a candidate gene from an analysis of F2 mice from inbred strains with high (C57BL/6N; B6) and low (C3H/HeN; C3H) PPI levels. Here, we reanalyzed the previously reported QTLs with increased marker density. The highest logarithm of odds score (26.66) peaked at a synonymous coding and splice-site variant, c.753G>A (rs257098870), in the Cdh23 gene on chromosome 10; the c.753G (C3H) allele showed a PPI-lowering effect. Bayesian multiple QTL mapping also supported the same variant with a posterior probability of 1. Thus, we engineered the c.753G (C3H) allele into the B6 genetic background, which led to dampened PPI. We also revealed an e-QTL (expression QTL) effect imparted by the c.753G>A variant for the Cdh23 expression in the brain. In a human study, a homologous variant (c.753G>A; rs769896655) in CDH23 showed a nominally significant enrichment in individuals with schizophrenia. We also identified multiple potentially deleterious CDH23 variants in individuals with schizophrenia. Collectively, the present study reveals a PPI-regulating Cdh23 variant and a possible contribution of CDH23 to schizophrenia susceptibility

    Emx2 patterns the neocortex by regulating FGF positional signaling. Nature Neurosci

    No full text
    The fundamental organization of the mammalian cerebral cortex is its division into anatomically and functionally distinct areas. These areas form a map that is highly similar among individuals of the same species and has common features across species 1 . In the classic 'protomap' model 2 , a template of the area map is established in the proliferative layer of the cortical primordium and translated through orderly migration of neurons to the cortical plate. Several studies support such an early regionalization of the cortical primordium 3-7 , but the underlying molecular mechanisms have been obscure. Recent observations support a model in which the area map is patterned by mechanisms similar to those used elsewhere in the embryo Two recent studies indicate that an anterior source of FGF8 in the cortical primordium controls anterior/posterior (A/P) position in the neocortical area map 9,25 . The anterior pole is the site of the future prefrontal and orbital cortex; the posterior pole includes primary visual cortex. Robust evidence also supports a central role for the transcription factor Emx2 in area patterning along the A/P axis Further, Emx2 and FGF8 show complementary expression patterns during early corticogenesis. At embryonic day 9 (E9), just before cortical neurogenesis begins, Emx2 is expressed in a 'highP/lowA' gradient in the cortical primordium, with an anterior boundary abutting and partly surrounding the expression domain of FGF8 Unlike the FGF8-expressing isthmic organizer, long known to pattern the midbrain and hindbrain 28-31 , the FGF8 source in the anterior telencephalon has only recently been shown to play a patterning role Investigation of this issue is aided by development of in-utero microelectroporation-a technique that makes the mouse embryo accessible for acute manipulations of gene function 25 . We used this technique to examine the interplay between FGF8 and Emx2. Strongly similar changes in the area map after decreased Emx2 or increased FGF8 suggest an antagonistic relationship. Our observations indicate both that FGF8 downregulates Emx2 expression and that Emx2 constrains the boundaries of the FGF8 source. Further findings indicate that the primary relationship with respect to cortical area patterning is the latter: the regulation of FGF8 by Emx2. RESULTS FGF8 regulates the Emx2 expression gradient To determine whether FGF8 regulates the Emx2 gradient in mouse cortical primordium, we altered levels of FGF8 using in-utero Whether FGF8 and Emx2 act independently or coordinately, or whether one controls the other, has not been determined. Here we report that Emx2, by regulating FGF8, has an indirect but vital role in area-map development. Using electroporation-mediated gene transfer in living mouse embryos, we found that overexpressing Emx2 altered the area map, but only when ectopic Emx2 overlapped the FGF8 source. Furthermore, we found that FGF8 levels were decreased by excess Emx2, and increased in mice lacking Emx2. Finally, cortical domain shifts that characterize Emx2 mutants were rescued by sequestering excess FGF8 with a truncated FGF receptor construct. These findings begin to clarify the signaling network that patterns the neocortical area map

    Diffusible GRAPHIC to visualize morphology of cells after specific cell–cell contact

    No full text
    Abstract The ability to identify specific cell–cell contact in the highly heterogeneous mammalian body is crucial to revealing precise control of the body plan and correct function. To visualize local connections, we previously developed a genetically encoded fluorescent indicator, GRAPHIC, which labels cell–cell contacts by restricting the reconstituted green fluorescent protein (GFP) signal to the contact site. Here, we modify GRAPHIC to give the reconstituted GFP motility within the membrane, to detect cells that make contact with other specific cells. Removal of leucine zipper domains, located between the split GFP fragment and glycophosphatidylinositol anchor domain, allowed GFP reconstituted at the contact site to diffuse throughout the entire plasma membrane, revealing cell morphology. Further, depending on the structural spacers employed, the reconstituted GFP could be selectively targeted to N terminal (NT)- or C terminal (CT)-probe-expressing cells. Using these novel constructs, we demonstrated that we can specifically label NT-probe-expressing cells that made contact with CT-probe-expressing cells in an epithelial cell culture and in Xenopus 8-cell-stage blastomeres. Moreover, we showed that diffusible GRAPHIC (dGRAPHIC) can be used in neuronal circuits to trace neurons that make contact to reveal a connection map. Finally, application in the developing brain demonstrated that the dGRAPHIC signal remained on neurons that had transient contacts during circuit development to reveal the contact history. Altogether, dGRAPHIC is a unique probe that can visualize cells that made specific cell–cell contact
    • …
    corecore