1,832 research outputs found

    Temperature dependence of the ohmic conductivity and activation energy of Pb1+y(Zr0.3Ti0.7)O3 thin films

    Full text link
    The ohmic conductivity of the sol-gel derived Pb1+y(Zr0.3Ti0.7)O3 thin films (with the excess lead y=0.0 to 0.4) are investigated using low frequency small signal alternate current (AC) and direct current (DC) methods. Its temperature dependence shows two activation energies of 0.26 and 0.12 eV depending on temperature range and excess Pb levels. The former is associated with Pb3+ acceptor centers, while the latter could be due to a different defect level yet to be identified.Comment: 13 pages, 3 figures, PostScript. Submitted to Applied Physics Letter

    Testing Tablet Computers in Nursing Education: A Comprehensive Evaluation Framework

    Get PDF
    Background: Tablet Computers (TCs) and other mobile digital devices are rapidly changing the way we communicate and access information in our personal and professional lives. Scarce research exists regarding their effectiveness in promoting the learning of health professionals. This paper describes the evaluation framework used in a study to test TCs in a post-diploma baccalaureate nursing program in the Gulf Cooperation Council (GCC) state of Qatar.Purpose: The evaluation framework was structured around 10 objectives designed to assess the impact of TC integration into the evidence-based practice (EBP) and reflective practice (RP) components of a scholarship course. Evaluation variables included perceptions of knowledge, confidence, comfort, satisfaction and technical skill before and after the 7-week TC implementation; students’ usage patterns and attitudes about the usefulness of TCs in promoting their learning related to EBP and RP were also examined; in addition, students’ views about the impact of TCs on the learning environment and their engagement in the learning process were sought.Methods: A mixed method descriptive design was used to assess outcomes of interest. Qualitative methods (focus groups, participant observation, field notes and reflective journals) were used to capture subjective perspectives of TC users. Quantitative methods (pre-test/posttest, activity logs and skills labs) were used to assess change in knowledge, attitude and technical proficiency over time.Results: The evaluation framework used to assess process and outcome variables in this study combined structural, philosophical, theoretical, pedagogical and methodological elements. These included the logic model, participatory action, theory-based course concepts, as well as a learning taxonomy involving cognitive, affective and psychomotor competencies.Conclusion: The value of a comprehensive evaluation plan executed in tandem with TC implementation is highlighted

    A systematic review of the energy and climate impacts of teleworking

    Get PDF
    Information and communication technologies (ICTs) increasingly enable employees to work from home and other locations (‘teleworking’). This study explores the extent to which teleworking reduces the need to travel to work and the consequent impacts on economy-wide energy consumption. Methods/Design: The paper provides a systematic review of the current state of knowledge of the energy impacts of teleworking. This includes the energy savings from reduced commuter travel and the indirect impacts on energy consumption associated with changes in non-work travel and home energy consumption. The aim is to identify the conditions under which teleworking leads to a net reduction in economy-wide energy consumption, and the circumstances where benefits may be outweighed by unintended impacts. The paper synthesises the results of 39 empirical studies, identified through a comprehensive search of 9,000 published articles. Review results/Synthesis: Twenty six of the 39 studies suggest that teleworking reduces energy use, and only eight studies suggest that teleworking increases, or has a neutral impact on energy use. However, differences in the methodology, scope and assumptions of the different studies make it difficult to estimate ‘average’ energy savings. The main source of savings is the reduced distance travelled for commuting, potentially with an additional contribution from lower office energy consumption. However, the more rigorous studies that include a wider range of impacts (e.g. non-work travel or home energy use) generally find smaller savings. Discussion: Despite the generally positive verdict on teleworking as an energy-saving practice, there are numerous uncertainties and ambiguities about its actual or potential benefits. These relate to the extent to which teleworking may lead to unpredictable increases in non-work travel and home energy use that may outweigh the gains from reduced work travel. The available evidence suggests that economy-wide energy savings are typically modest, and in many circumstances could be negative or non-existent

    Fractalkine and other chemokines in primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is characterized by the autoimmune injury of small intrahepatic bile duct. On this basis, it has been suggested that the targeted biliary epithelial cells (BEC) play an active role in the perpetuation of autoimmunity by attracting immune cells via chemokine secretion. To address this issue, we challenged BEC using multiple toll-like receptor (TLR) ligands as well as autologous liver infiltrating mononuclear cells (LMNC) with subsequent measurement of BEC phenotype and chemokine production and LMNC chemotaxis by quantifying specific chemokines, specially CX3CL1 (fractalkine). We submit the hypothesis that BEC are in fact the innocent victims of the autoimmune injury and that the adaptive immune response is critical in PBC

    van der Waals coupling in atomically doped carbon nanotubes

    Full text link
    We have investigated atom-nanotube van der Waals (vdW) coupling in atomically doped carbon nanotubes (CNs). Our approach is based on the perturbation theory for degenerated atomic levels, thus accounting for both weak and strong atom-vacuum-field coupling. The vdW energy is described by an integral equation represented in terms of the local photonic density of states (DOS). By solving it numerically, we demonstrate the inapplicability of standard weak-coupling-based vdW interaction models in a close vicinity of the CN surface where the local photonic DOS effectively increases, giving rise to an atom-field coupling enhancement. An inside encapsulation of atoms into the CN has been shown to be energetically more favorable than their outside adsorption by the CN surface. If the atom is fixed outside the CN, the modulus of the vdW energy increases with the CN radius provided that the weak atom-field coupling regime is realized (i.e., far enough from the CN). For inside atomic position, the modulus of the vdW energy decreases with the CN radius, representing a general effect of the effective interaction area reduction with lowering the CN curvature.Comment: 15 pages, 5 figure

    Nonadiabatic Pauli susceptibility in fullerene compounds

    Full text link
    Pauli paramagnetic susceptibility χ\chi is unaffected by the electron-phonon interaction in the Migdal-Eliashberg context. Fullerene compounds however do not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic effects are expected to be relevant in these materials. In this paper we investigate the Pauli spin susceptibility in nonadiabatic regime by following a conserving approach based on Ward's identity. We find that a sizable renormalization of χ\chi due to electron-phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic dependence of χ\chi on the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increasing, in agreement with the temperature dependence of χ\chi observed in fullerene compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include

    Quantum cloning

    Full text link
    The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional and for continuous-variable quantum systems); in addition, it presents the role of cloning in quantum cryptography, the link between optimal cloning and light amplification via stimulated emission, and the experimental demonstrations of optimal quantum cloning
    corecore