102 research outputs found

    Optimization temperature sensitivity using the optically detected magnetic resonance spectrum of a nitrogen-vacancy center ensemble

    Get PDF
    Temperature sensing with nitrogen vacancy (NV) centers using quantum techniques is very promising and further development is expected. Recently, the optically detected magnetic resonance (ODMR) spectrum of a high-density ensemble of the NV centers was reproduced with noise parameters [inhomogeneous magnetic field, inhomogeneous strain (electric field) distribution, and homogeneous broadening] of the NV center ensemble. In this study, we use ODMR to estimate the noise parameters of the NV centers in several diamonds. These parameters strongly depend on the spin concentration. This knowledge is then applied to theoretically predict the temperature sensitivity. Using the diffraction-limited volume of 0.1 micron^3, which is the typical limit in confocal microscopy, the optimal sensitivity is estimated to be around 0.76 mK/Hz^(1/2) with an NV center concentration of 5.0e10^17/cm^3. This sensitivity is much higher than previously reported sensitivities, demonstrating the excellent potential of temperature sensing with NV centers.Comment: 17 pages, 4 figures, 1 tabl

    Immunological detection of D-β-aspartate-containing protein in lens-derived cell lines

    Get PDF
    Alpha-crystallin is the major protein of the mammalian lens and its average molecular weight is approximately 800 kDa. It is composed of two kinds of structurally and functionally related polypeptides, αA-and αB-crystallin subunits, each with a molecular weight of 20 kDa Recently, we prepared a polyclonal antibody against peptide Gly-Leu-D-β-Asp-Ala-Thr-Gly-Leu-D-β-Asp-Ala-ThrGly-Leu-D-β-Asp-Ala-Thr (anti-peptide 3R antibody) that corresponded to three repeats of positions 149-153 in human αA-crystallin [11]. This antibody cross-reacted specifically with D-β-Asp-151-containing αA-crystallin. Because formation of D-Asp is accompanied by isomerization to form the β-Asp (isoaspartate) residue, three isomers of Asp residues, L-β-Asp, D-α-Asp and D-β-Asp isomers, are formed in the protein Cell culture systems are used widely for the analysis of cellular functions related to particular organ systems. For lens research, it is of particular interest to find conditions that reflect the situation within this organ. In order to establish whether the D-β-Asp-containing protein is present in cultured lens cells, we cultured two cell lines, αTN4-1 and N/N1003A, which are commonly used in lens research Conclusions: The results indicate that the N/N1003A cell line expressed a 50 kDa D-β-Asp-containing protein, which may share a common amino acid sequence with αA-and αB-crystallin

    Spectrin and calmodulin in spreading mouse blastomeres

    Full text link
    The role of spectrin and its association with calmodulin in spreading mouse blastomeres was investigated. Embryonic spectrin binds 125I-calmodulin in a calcium-dependent fashion in the blot overlay technique. Double-labeling experiments show coordinate redistribution of spectrin and calmodulin in blastomeres preparing to undergo active spreading movement. At this stage cortical spectrin staining is lost from the region of cell-substrate contact and spectrin and calmodulin become concentrated in two structures closely associated with the contacted region: a group of spherical bodies located on the cytoplasmic side of the cortical layer and a subcortical ring that marks the perimeter of the contacted region. The localization pattern of spectrin and calmodulin is also coordinated with that of actin and myosin. The results suggest that spectrin plays a role in the spreading of blastomeres and that this function may involve linkage of spectrin, calmodulin, and the cortical contractile apparatus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27372/1/0000399.pd

    Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV) disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s) underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth) induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM). Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives.</p> <p>Results</p> <p>E11 mouse mandibular processes (MANs) were infected with mouse CMV (mCMV) for up to 16 days <it>in vitr</it>o. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins.</p> <p>Conclusion</p> <p>Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal cells and surrounding matrix. Moreover, since it is critically important that signaling molecules are expressed in appropriate cell populations during development, the aberrant localization of components of relevant signaling pathways may reveal the pathogenic mechanism underlying mandibular malformations.</p

    FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal

    Get PDF
    SummaryPrecise self-renewal of the germ cell lineage is fundamental to fertility and reproductive success. The early precursors for the germ lineage, primordial germ cells (PGCs), survive and proliferate in several embryonic locations during their migration to the embryonic gonad. By elucidating the active signaling pathways in migratory PGCs in vivo, we were able to create culture conditions that recapitulate this embryonic germ cell environment. In defined medium conditions without feeder cells, the growth factors FGF2, insulin, and Activin A, signaling through their cognate-signaling pathways, were sufficient for self-renewal of germline-competent PGCs. Forced expression of constitutively active MEK1, AKT, and SMAD3 proteins could replace their respective upstream growth factors. Unexpectedly, we found that BMP4 could replace Activin A in non-clonal growth conditions. These defined medium conditions identify the key molecular pathways required for PGC self-renewal and will facilitate efforts in biobanking of chicken genetic resources and genome editing
    corecore