6 research outputs found

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    Classification of different reaching movements from the same limb using EEG

    Get PDF
    Objective. Brain–computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, due to the stochastic nature, poor spatial resolution and signal to noise ratio from electroencephalography (EEG), multidimensional decoding has been the main obstacle to implement non-invasive BCIs in real-live rehabilitation scenarios. This study explores the classification of several functional reaching movements from the same limb using EEG oscillations in order to create a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed four 3D center-out reaching tasks in four different sessions while wearing a passive robotic exoskeleton at their right upper limb. Kinematics data were acquired from the robotic exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into four forward reaching movements (from a starting position towards four target positions), a backward movement (from any of the targets to the starting position and rest). Recalibrating the classifier using data from previous or the same session was also investigated and compared. Main results. Average EEG decoding accuracy were significantly above chance with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, respectively. Furthermore, classification accuracy could be increased when using data from the beginning of each session as training data to recalibrate the classifier. Significance. Our results demonstrate that classification from several functional movements performed by the same limb is possible with acceptable accuracy using EEG oscillations, especially if data from the same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic devices using EEG data. These results have important implications towards assistive and rehabilitative neuroprostheses control in paralyzed patients.This study was funded by the Baden-Württemberg Stiftung (GRUENS), the Deutsche Forschungsgemeinschaft (DFG, Koselleck and SP-1533/2-1), Bundes Ministerium für Bildung und Forschung BMBF MOTORBIC (FKZ 13GW0053), the fortune-Program of the University of Tübingen (2422-0-0), and AMORSA (FKZ 16SV7754). A Sarasola-Sanz’s work is supported by the La Caixa-DAAD scholarship, and N IrastorzaLanda’s work by the Basque Government and IKERBASQUE, Basque Foundation for Science

    Design and effectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients

    Get PDF
    The motor impairment occurring after a stroke is characterized by pathological muscle activation patterns or synergies. However, while robot-aided myoelectric interfaces have been proposed for stroke rehabilitation, they do not address this issue, which might result in inefficient interventions. Here, we present a novel paradigm that relies on the correction of the pathological muscle activity as a way to elicit rehabilitation, even in patients with complete paralysis. Previous studies demonstrated that there are no substantial inter-limb differences in the muscle synergy organization of healthy individuals. We propose building a subject-specific model of muscle activity from the healthy limb and mirroring it to use it as a learning tool for the patient to reproduce the same healthy myoelectric patterns on the paretic limb during functional task training. Here, we aim at understanding how this myoelectric model, which translates muscle activity into continuous movements of a 7-degree of freedom upper limb exoskeleton, could transfer between sessions, arms and tasks. The experiments with 8 healthy individuals and 2 chronic stroke patients proved the feasibility and effectiveness of such myoelectric interface. We anticipate the proposed method to become an efficient strategy for the correction of maladaptive muscle activity and the rehabilitation of stroke patients.This study was funded by the Baden-Württemberg Stiftung (GRUENS ROB-1), the Deutsche Forschungsgemeinschaft (DFG, Koselleck), the Fortüne-Program of the University of Tübingen (2422-0-0), and the Bundes Ministerium für Bildung und Forschung BMBF MOTORBIC (FKZ 13GW0053), AMORSA (FKZ 16SV7754), Gipuzkoa Regional Government (INKRATEK), Ministry of Science of the Basque Country (Elkartek: EXOTEK). A. Sarasola-Sanz’s work was supported by La Caixa-DAAD scholarship and N. Irastorza-Landa’s work by the Basque Government and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

    Controlling Assistive Machines in Paralysis Using Brain Waves and Other Biosignals

    Get PDF
    The extent to which humans can interact with machines significantly enhanced through inclusion of speech, gestures, and eye movements. However, these communication channels depend on a functional motor system. As many people suffer from severe damage of the motor system resulting in paralysis and inability to communicate, the development of brain-machine interfaces (BMI) that translate electric or metabolic brain activity into control signals of external devices promises to overcome this dependence. People with complete paralysis can learn to use their brain waves to control prosthetic devices or exoskeletons. However, information transfer rates of currently available noninvasive BMI systems are still very limited and do not allow versatile control and interaction with assistive machines. Thus, using brain waves in combination with other biosignals might significantly enhance the ability of people with a compromised motor system to interact with assistive machines. Here, we give an overview of the current state of assistive, noninvasive BMI research and propose to integrate brain waves and other biosignals for improved control and applicability of assistive machines in paralysis. Beside introducing an example of such a system, potential future developments are being discussed

    EEG signal analysis before and after performing salat on gamma band / Farid Shiman

    Get PDF
    Religious meditations and prayers were seen as the conditions necessary for promoting relaxation, healthy living, and acting as alternative medical therapies for balancing human mind and body. In this study, the investigation of all the neuropsychophysiological effects of pre- and post-baseline of an Islamic prayer (Salat) on the electroencephalogram (EEG) was carried out. The EEG data in this study were recorded for ten healthy males for pre- and post-baseline in the performance of the Salat. In order to analyze the data from the EEG signals of this study, AcqKnowledge 4.0 software (BIOPAC Systems Inc, Goleta, CA) and Matlab were used to compute and analyze the power spectral density (PSD) data (in µv²) for the Gamma (30-60 Hz) band. The results show that the gamma EEG power has significant increase in post-baseline compared to the pre-baseline. The statistical analysis (paired t-test) indicated that there was significant increase of gamma power in the frontal and occipital channels.Additionally, meditation in Salat in the forms of Focus Attention (FA) and Transcendetional Meditation(TM) were introduced for the first time as cognitive processes and EEG pattern in this study. This study further revealed that there are physiological changes during meditation which in turn suggested that there is wakeful hypometabolic state which has the qualities of decreasing the sympathetic nervous activity but increasing parasympathetic activity
    corecore