1,288 research outputs found

    Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks

    No full text
    International audienceThe difference between gas and water permeabilities is significant not only for solving gas-water two-phase flow problems, but also for quick measurements of permeability using gas as pore fluid. We have measured intrinsic permeability of sedimentary rocks from the Western Foothills of Taiwan, using nitrogen gas and distilled water as pore fluids, during several effective-pressure cycling tests at room temperature. The observed difference in gas and water permeabilities has been analyzed in view of the Klinkenberg effect. This effect is due to slip flow of gas at pore walls which enhances gas flow when pore sizes are very small. Experimental results show (1) that gas permeability is larger than water permeability by several times to one order of magnitude, (2) that gas permeability increases with increasing pore pressure, and (3) that water permeability slightly increases with increasing pore-pressure gradient across the specimen. The results (1) and (2) can be explained by Klinkenberg effect quantitatively with an empirical power law for Klinkenberg constant. Thus water permeability can be estimated from gas permeability. The Klinkenberg effect is important when permeability is lower than 10?18 m2 and at low differential pore pressures, and its correction is essential for estimating water permeability from the measurement of gas permeability. A simple Bingham-flow model of pore water can explain the overall trend of the result (3) above. More sophisticated models with a pore-size distribution and with realistic rheology of water film is needed to account for the observed deviation from Darcy's law

    Clinical and molecular characterization of both methicillin-resistant andsensitive staphylococcus aureus mastitis

    Get PDF
    NO ABSTRACT AVAILABLEThis study targeted bovine mastitis as a possible source of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA), to identify clinical signs associated with MRSA- and non-MRSA-associated mastitis. Thirty-eight mastitis cases (68 infected quarters) were investigated. Gram-positive cocci-shaped isolates were selected based on Baird Parker agar growth as well as Gram-stained bacterial smears. Molecular screening for Staphylococcus aureus (S. aureus) yielded 17 isolates, of which five (29.41%) were methicillin resistant. The five isolates were mecA positive, but mecC negative. Multilocus sequence typing (MLST) indicated that sequence type 1 (ST1) was the identified type of all isolates of MRSA. S. aureus-associated cases showed different clinical forms of mastitis, including subclinical, acute, chronic, and gangrenous. Additionally, subclinical mastitis was the only detected condition associated with MRSA, which may represent a potential hidden risk for humans. Phenotypically, isolates of MRSA showed resistance to all of the tested β-lactam antimicrobials, with marked resistance to tetracycline and gentamycin. Based on our knowledge, this is the first report to identify MRSA ST1 in Egypt. Bovine mastitis could be a source for the dissemination of MRSA to humans and other animals. Additionally, while methicillin-resistance may have no effect on the clinical outcome of mastitis, it does affect therapeutic success, particularly when β-lactam antimicrobials are used

    Mitochondrial Genome Polymorphism in Lolium perenne

    Get PDF
    The restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA) of perennial ryegrass (Lolium perenne L.) were investigated to elucidate the genetic relatedness among the 128 cultivars including diploid and tetraploid. Many patterns of RFLPs were observed and allowed assigning of the cultivars into the main eight haplotypes of mitochondrial genome relatedness. The American cultivars were classified into haplotype I and VIII which were remote at the mitochondrial genome from each other, the European ones were distributed to all haplotypes and the tetraploid ones were mostly assigned into the haplotype V. The assessment of mtDNA RFLPs may be a valuable method in analyzing a cytoplasmic differentiation among the perennial ryegrass cultivars. Further investigations are required to elucidate mtDNA diversity in relation with the maternal effects on the agronomic traits of perennial ryegrass

    On the transient behavior of frictional melt during seismic slip

    Get PDF
    In a recent work on the problem of sliding surfaces under the presence of frictional melt (applying in particular to earthquake fault dynamics), we derived from first principles an expression for the steady state friction compatible with experimental observations. Building on the expressions of heat and mass balance obtained in the above study for this particular case of Stefan problem (phase transition with a migrating boundary) we propose here an extension providing the full time-dependent solution (including the weakening transient after pervasive melting has started, the effect of eventual steps in velocity and the final decelerating phase). A system of coupled equations is derived and solved numerically. The resulting transient friction and wear evolution yield a satisfactory fit (1) with experiments performed under variable sliding velocities (0.9-2 m/s) and different normal stresses (0.5-20 MPa) for various rock types and (2) with estimates of slip weakening obtained from observations on ancient seismogenic faults that host pseudotachylite (solidified melt). The model allows to extrapolate the experimentally observed frictional behavior to large normal stresses representative of the seismogenic Earth crust (up to 200 MPa), high slip rates (up to 9 m/s) and cases where melt extrusion is negligible. Though weakening distance and peak stress vary widely, the net breakdown energy appears to be essentially independent of either slip velocity and normal stress. In addition, the response to earthquake-like slip can be simulated, showing a rapid friction recovery when slip rate drops. We discuss the properties of energy dissipation, transient duration, velocity weakening, restrengthening in the decelerating final slip phase and the implications for earthquake source dynamics
    corecore