541 research outputs found
Density functional calculations of the electronic structure and magnetic properties of the hydrocarbon K3picene superconductor near the metal-insulator transition
We have investigated the electronic structures and magnetic properties of of
K3picene, which is a first hydrocarbon superconductor with high transition
temperature T_c=18K. We have shown that the metal-insulator transition (MIT) is
driven in K3picene by 5% volume enhancement with a formation of local magnetic
moment. Active bands for superconductivity near the Fermi level E_F are found
to have hybridized character of LUMO and LUMO+1 picene molecular orbitals.
Fermi surfaces of K3picene manifest neither prominent nesting feature nor
marked two-dimensional behavior. By estimating the ratio of the Coulomb
interaction U and the band width W of the active bands near E_F, U/W, we have
demonstrated that K3picene is located in the vicinity of the Mott transition.Comment: 5 pages, 5 figure
Osteoblast-Osteoclast Communication and Bone Homeostasis
Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. A direct interaction between osteoblasts and osteoclasts allows bidirectional transduction of activation signals through EFNB2-EPHB4, FASL-FAS or SEMA3A-NRP1, regulating differentiation and survival of osteoblasts or osteoclasts. Alternatively, osteoblasts produce a range of different secretory molecules, including M-CSF, RANKL/OPG, WNT5A, and WNT16, that promote or suppress osteoclast differentiation and development. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here we review the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts
A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation
The osteoblast differentiation capacity of skeletal stem cells (SSCs) must be tightly regulated, as inadequate bone formation results in low bone mass and skeletal fragility, and over-exuberant osteogenesis results in heterotopic ossification (HO) of soft tissues. RUNX2 is essential for tuning this balance, but the mechanisms of posttranslational control of RUNX2 remain to be fully elucidated. Here, we identify that a CK2/HAUSP pathway is a key regulator of RUNX2 stability, as Casein kinase 2 (CK2) phosphorylates RUNX2, recruiting the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP), which stabilizes RUNX2 by diverting it away from ubiquitin-dependent proteasomal degradation. This pathway is important for both the commitment of SSCs to osteoprogenitors and their subsequent maturation. This CK2/HAUSP/RUNX2 pathway is also necessary for HO, as its inhibition blocked HO in multiple models. Collectively, active deubiquitination of RUNX2 is required for bone formation and this CK2/HAUSP deubiquitination pathway offers therapeutic opportunities for disorders of inappropriate mineralization
The ERK MAPK Pathway Is Essential for Skeletal Development and Homeostasis
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1(Osx)Mek2(-/-)), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1(Osx-ERT)Mek2(-/-)) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and beta-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation
Clinical Characteristics and Risk Factors for Nosocomial Candidemia in Medical Intensive Care Units: Experience in a Single Hospital in Korea for 6.6 Years
The aim of this study was to determine candidemia incidence among patients in a medical intensive-care unit (MICU) and the associated mortality rate and to identify risk factors associated with candidemia. We retrospectively performed a 1:3 matched case-control study of MICU patients with candidemia. Controls were matched for sex, age, and Acute Physiology and Chronic Health Evaluation (APACHE) II score. Candidemia incidence was 9.1 per 1,000 admissions. The most common pathogen was Candida albicans. Crude mortality was 96% among candidemia patients and 52% among controls (P<0.001). Mortality differed significantly between the groups according to Kaplan-Meier survival analysis (P=0.024). Multivariate analysis identified the following independent risk factors for candidemia: central venous catheterization (odds ratio [OR] = 3.2, 95% confidence interval [CI]=1.2-9.0), previous steroid therapy (OR=4.7, 95% CI=1.8-12.1), blood transfusion during the same admission period (OR=6.3, 95% CI=2.4-16.7), and hepatic failure upon MICU admission (OR=6.9, 95% CI=1.7-28.4). In conclusion, we identify an additional independent risk factor for candidemia, the presence of hepatic failure on MICU admission. Therefore, increased awareness of risk factors, including hepatic failure, is necessary for the management of candidemia
Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis
RNAi-based bone anabolic gene therapy has demonstrated initial success, but many practical challenges are still unmet. Here, we demonstrate that a recombinant adeno-associated virus 9 (rAAV9) is highly effective for transducing osteoblast lineage cells in the bone. The adaptor protein Schnurri-3 (SHN3) is a promising therapeutic target for osteoporosis, as deletion of shn3 prevents bone loss in osteoporotic mice and short-term inhibition of shn3 in adult mice increases bone mass. Accordingly, systemic and direct joint administration of an rAAV9 vector carrying an artificial-microRNA that targets shn3 (rAAV9-amiR-shn3) in mice markedly enhanced bone formation via augmented osteoblast activity. Additionally, systemic delivery of rAAV9-amiR-shn3 in osteoporotic mice counteracted bone loss and enhanced bone mechanical properties. Finally, we rationally designed a capsid that exhibits improved specificity to bone by grafting the bone-targeting peptide motif (AspSerSer)6 onto the AAV9-VP2 capsid protein. Collectively, our results identify a bone-targeting rAAV-mediated gene therapy for osteoporosis
The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice
Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway memberβencoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-Ξ²βactivated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1βMKK3/6βp38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38Ξ² and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38Ξ² agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging
Oral Muscle Relaxant May Induce Immediate Allergic Reactions
Eperisone and afloqualone act by relaxing both skeletal and vascular smooth muscles to improve circulation and suppress pain reflex. These drugs are typically prescribed with non-steroidal anti-inflammatory drugs (NSAIDs) as painkillers. However, there have been no reports on serious adverse reactions to oral muscle relaxants; and this is the first report to describe three allergic reactions caused by eperisone and afloqualone. All three patients had histories of allergic reactions after oral intake of multiple painkillers, including oral muscle relaxants and NSAIDs, for chronic muscle pain. An open-label oral challenge test was performed with each drug to confirm which drugs caused the systemic reactions. All patients experienced the same reactions within one hour after oral intake of eperisone or afloqualone. The severity of these reactions ranged from laryngeal edema to hypotension. To confirm that the systemic reaction was caused by eperisone or afloqualone, skin prick testing and intradermal skin tests were performed with eperisone or afloqualone extract in vivo, and basophil activity tests were performed after stimulation with these drugs in vitro. In one patient with laryngeal edema, the intradermal test with afloqualone extract had a positive result, and CD63 expression levels on basophils increased in a dose-dependent manner by stimulation with afloqualone. We report three allergic reactions caused by oral muscle relaxants that might be mediated by non-immunoglobulin E-mediated responses. Since oral muscle relaxants such as eperisone and afloqualone are commonly prescribed for chronic muscle pain and can induce severe allergic reactions, we should prescribe them carefully
- β¦