6 research outputs found

    Nano-design of metal oxide electrodes for Li- and Na-ion hybrid energy storage

    Get PDF
    The growing use of portable devices and a global transition to electric vehicles has tremendously increased the demand for energy storage devices such as lithium-ion batteries and supercapacitors. Especially the interest is established for better devices exceeding the energy and power performance of current technology. The hybrid supercapacitor (HSC) concept addresses the limits of each device and utilizes the distinct electrochemical features of lithium-ion batteries and supercapacitors. The focus of this Ph.D. thesis is the nano-design of hybrid materials of metal oxides and carbon for better electrochemical performance in lithium- and sodium-ion hybrid energy storage devices. The hybridization of metal oxide and carbon substrate can be achieved by tailored sol-gel synthesis, yielding a homogeneous distribution of nanosized metal oxide domain in the hybrid material. The performance of the hybrids was superior to the composite concept electrodes, but this is not a statement that can be generalized for all sorts of (nano)composites. In addition to the electrode material, also the electrolyte choice has a strong impact on the device operation and safety. The use of alternative solvents and Li- or Na-containing ionic liquids allows to increase the upper temperature and cell voltage at which Li- and Na-based systems can be safely operated at.Der wachsende Einsatz mobiler elektronischer Geräte und der weltweite Übergang hin zur Elektromobilität hat die Nachfrage nach Energiespeichern wie Lithium-Ionen-Batterien und Superkondensatoren stark erhöht. In diesem Zusammenhang besteht ein besonders großer Bedarf an Technologien, welche die Leistungsmerkmale heutiger Speichermodule in Bezug auf Energie und Leistung deutlich übertreffen können. Ein vielversprechendes Beispiel sind Hybrid-Superkondensatoren (HSC), welche Eigenschaften von Lithium-Ionen-Batterien und Superkondensatoren synergetisch kombinieren. Der Fokus dieser Promotionsarbeit liegt auf dem Nano-Design von Hybridmaterialien aus Metalloxiden und Kohlenstoff für eine verbesserte elektrochemische Leistung in hybriden Lithium- oder Natrium-ionen-Energiespeichern. Die Hybridisierung von Metalloxid- und Kohlenstoffsubstrat kann durch eine angepasste Sol-Gel-Synthese erreicht werden, was zu einer homogenen und nanoskaligen Verteilung des Metalloxids im resultierenden Hybridmaterial führt. Elektroden, welche solche Hybridmaterialien einsetzen, können besser Leistungsmerkmale erreichen, als vergleichbare Komposit-Materialien, welche durch rein physikalisches Mischen zweier Phasen erreicht werden. Dieser Umstand lässt sich allerdings nicht pauschal für alle Arten von (Nano)kompositen anwenden. Neben dem Elektrodenmaterial beeinflusst auch die Wahl des Elektrolyten die Leistungsmerkmale von elektrochemischen Energiespeichern. Der Einsatz alternativer organischer Lösungsmittel oder Li- bzw. Na-haltiger ionischer Flüssigkeiten ermöglicht die betriebssichere Verwendung von Li- und Na-HSC Systemen selbst bei erhöhten Temperaturen bzw. erhöhter Zellspannung

    Titanium Niobium Oxide Ti2 Nb10 O29 /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for High-Performance Lithium-Ion Batteries

    Get PDF
    This work introduces the facile and scalable two‐step synthesis of Ti2Nb10O29 (TNO)/carbon hybrid material as a promising anode for lithium‐ion batteries (LIBs). The first step consisted of a mechanically induced self‐sustaining reaction via ball‐milling at room temperature to produce titanium niobium carbide with a Ti and Nb stoichiometric ratio of 1 to 5. The second step involved the oxidation of as‐synthesized titanium niobium carbide to produce TNO. Synthetic air yielded fully oxidized TNO, while annealing in CO2 resulted in TNO/carbon hybrids. The electrochemical performance for the hybrid and non‐hybrid electrodes was surveyed in a narrow potential window (1.0–2.5 V vs. Li/Li+) and a large potential window (0.05–2.5 V vs. Li/Li+). The best hybrid material displayed a specific capacity of 350 mAh g−1 at a rate of 0.01 A g−1 (144 mAh g−1 at 1 A g−1) in the large potential window regime. The electrochemical performance of hybrid materials was superior compared to non‐hybrid materials for operation within the large potential window. Due to the advantage of carbon in hybrid material, the rate handling was faster than that of the non‐hybrid one. The hybrid materials displayed robust cycling stability and maintained ca. 70 % of their initial capacities after 500 cycles. In contrast, only ca. 26 % of the initial capacity was maintained after the first 40 cycles for non‐hybrid materials. We also applied our hybrid material as an anode in a full‐cell lithium‐ion battery by coupling it with commercial LiMn2O4
    corecore