11 research outputs found
Evolution of the hydro-climate system in the Lake Baikal basin
SummaryClimatic changes can profoundly alter hydrological conditions in river basins. Lake Baikal is the deepest and largest freshwater reservoir on Earth, and has a unique ecosystem with numerous endemic animal and plant species. We here identify long-term historical (1938–2009) and projected future hydro-climatic trends in the Selenga River Basin, which is the largest sub-basin (>60% inflow) of Lake Baikal. Our analysis is based on long-term river monitoring and historical hydro-climatic observation data, as well as ensemble mean and 22 individual model results of the Coupled Model Intercomparison Project, Phase 5 (CMIP5). Study of the latter considers a historical period (from 1961) and projections for 2010–2039 and 2070–2099. Observations show almost twice as fast warming as the global average during the period 1938–2009. Decreased intra-annual variability of river discharge over this period indicates basin-scale permafrost degradation. CMIP5 ensemble projections show further future warming, implying continued permafrost thaw. Modelling of runoff change, however, is highly uncertain, with many models (64%) and their ensemble mean failing to reproduce historical behaviour, and with indicated future increase being small relative to the large differences among individual model results
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Climate model performance and change projection for freshwater fluxes: Comparison for irrigated areas in Central and South Asia
Study region: The large semi-arid Aral Region in Central Asia and the smaller tropical Mahanadi River Basin (MRB) in India. Study focus: Few studies have so far evaluated the performance of the latest generation of global climate models on hydrological basin scales. We here investigate the performance and projections of the global climate models in the Coupled Model Intercomparison Project, Phase 5 (CMIP5) for freshwater fluxes and their changes in two regional hydrological basins, which are both irrigated but of different scale and with different climate. New hydrological insights for the region: For precipitation in both regions, model accuracy relative to observations has remained the same or decreased in successive climate model generations until and including CMIP5. No single climate model out-performs other models across all key freshwater variables in any of the investigated basins. Scale effects are not evident from global model application directly to freshwater assessment for the two basins of widely different size. Overall, model results are less accurate and more uncertain for freshwater fluxes than for temperature, and particularly so for model-implied water storage changes. Also, the monsoon-driven runoff seasonality in MRB is not accurately reproduced. Model projections agree on evapotranspiration increase in both regions until the climatic period 2070–2099. This increase is fed by precipitation increase in MRB and by runoff water (thereby decreasing runoff) in the Aral Region. Keywords: CMIP5 global climate models, Hydro-climate, Freshwater change, Central Asia, South Asia, Monsoon driven seasonalit
Needs and means to advance science, policy and management understanding of the freshwater system – A synthesis report
Fragmented and inconsistent understanding of the freshwater system limits our ability to achieve water security and sustainability under the human-driven changes occurring in the Anthropocene. To advance system-level understanding of freshwater, gaps and inconsistencies in knowledge, data, representations and links of processes and subsystems need to be identified and bridged under consideration of the freshwater system as a continuous whole. Based on such identification, a freshwater system conceptualization is developed in this report, which emphasizes four essential, yet often neglected system aspects: i) Distinction of coastal divergent catchments. ii) Four main zones (surface, subsurface, coastal, observation) of different types of freshwater change. iii) Water pathways as system-coupling agents that link and partition water change among the four change zones. iv) Direct interactions with the anthroposphere as integral system pathways across the change zones. We explain and exemplify some key implications of these aspects, identifying in the process also distinct patterns of human-driven changes in large-scale water fluxes and nutrient loads. The present conceptualization provides a basis for common inter- and trans-disciplinary understanding and systematic characterization of the freshwater system function and its changes, and of approaches to their modeling and monitoring. This can be viewed and used as a unifying checklist that can advance science, policy and management of freshwater and related environmental changes across various scales and world regions.The research synthesized and summarized in this report has been funded by Nova R&D (project KLIV) and Stockholm University’s Strategic Environmental Research Program Ekoklim, in addition to the research funders noted below, the Swedish Research Council (VR, project 2009-3221) and The Swedish Research Council Formas (project 2014-43).Climate-land-water changes and integrated water resource management in coastal regions (KLIV
On the Use of Hydrological Models and Satellite Data to Study the Water Budget of River Basins Affected by Human Activities: Examples from the Garonne Basin of France
Natural and anthropogenic forcing factors and their changes significantly impact water resources in many river basins around the world. Information on such changes can be derived from fine scale in situ and satellite observations, used in combination with hydrological models. The latter need to account for hydrological changes caused by human activities to correctly estimate the actual water resource. In this study, we consider the catchment area of the Garonne river (in France) to investigate the capabilities of space-based observations and up-to-date hydrological modeling in estimating water resources of a river basin modified by human activities and a changing climate. Using the ISBA-MODCOU and SWAT hydrological models, we find that the water resources of the Garonne basin display a negative climate trend since 1960. The snow component of the two models is validated using the moderate-resolution imaging spectroradiometer snow cover extent climatology. Crop sowing dates based on remote sensing studies are also considered in the validation procedure. Use of this dataset improves the simulated evapotranspiration and river discharge amounts when compared to conventional data. Finally, we investigate the benefit of using the MAELIA multi-agent model that accounts for a realistic agricultural and management scenario. Among other results, we find that changes in crop systems have significant impacts on water uptake for agriculture. This work constitutes a basis for the construction of a future modeling framework of the sociological and hydrological system of the Garonne river region