30 research outputs found

    On the Interface Formation Model for Dynamic Triple Lines

    Full text link
    This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in [Bothe & Dreyer, Acta Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system

    The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.

    Get PDF
    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms

    On using the leveling of the free surface of a Newtonian fluid to measure viscosity and Navier slip length

    Get PDF
    Version éditeur : http://rspa.royalsocietypublishing.org/content/469/2160/20130457.shortMeasuring the relaxation time involved in the leveling of the free surface of a Newtonian fluid laid on a substrate can give access to material parameters. It is shown here how most favorable pattern geometries of the free surface and film thicknesses can be defined for the measures of viscosity and Navier slip length at the fluid-solid interface, respectively. Moreover, special emphasis is put on the conditions required to avoid shear-thinning by controling the maximum shear rate. For initially sinusoidal patterns with infinitesimal amplitudes, an analytical solution including slip at the fluid-solid interface is used, and numerical simulations based on the natural element method allow to discuss the effect of finite amplitudes. This leads to the definition of a relevance domain for the analytical solution that avoids the need for numerical simulations in practical applications. It is also shown how these results can be applied to crenelated profiles, where Fourier series expansion can be used, but with caution.ANR programme SINCRON

    Numerical Simulations of Curtain Coating with a Moving Contact Line

    No full text
    corecore