535 research outputs found
Study on Photon Activation Analysis of Carbon in Glasses for Fiber Amplifiers by Using the Flow Method for the Rapid Separation of ^<11>C(II. Radiochemistry)
We have studied nuclear interference from a matrix produced by (γ, n), (γ, 2n), (γ, p) and (n, γ) reactions and a flow method for ^C separation in order to develop an approach for the photon activation analysis of carbon in InF_3-based fluoride, chalcogenide and tellurite glasses for fiber amplifiers. We found that seventeen radionuclides are produced from these glasses and chemical separation is necessary to determine carbon. For the flow method, which involves the fusion of an irradiated sample with an oxidizer, the conversion of ^C into ^CO_2, and the absorption of ^C in ethanolamine solution, we used a mixture of Pb_3O_4 and B_2O_3 as the oxidizer. We also found that the reaction between ^F(γ, n) and ^Na(γ, αn) in the ethanolamine solution produced ^F contamination with fluoride and chalcogenide glasses and that this flow method can only be applied to tellurite glasses. We confirmed that the chemical yield of the flow method was close to 100 % when determining carbon in standard steel samples by using lithium carbonate as a standard sample. We determined that the carbon concentrations in two kinds of tellurite glass were 8 to 13 and 21 to 28 ppm, respectively
Thermodynamic formalism for dissipative quantum walks
We consider the dynamical properties of dissipative continuous-time quantum
walks on directed graphs. Using a large-deviation approach we construct a
thermodynamic formalism allowing us to define a dynamical order parameter, and
to identify transitions between dynamical regimes. For a particular class of
dissipative quantum walks we propose a quantum generalization of the the
classical PageRank vector, used to rank the importance of nodes in a directed
graph. We also provide an example where one can characterize the dynamical
transition from an effective classical random walk to a dissipative quantum
walk as a thermodynamic crossover between distinct dynamical regimes.Comment: 8 page
Se-Atom Incorporation in Fullerene and the MD Simulation(II. Radiochemistry)
The formation of Se atom-incorporated fullerenes has been investigated by using radionuclides produced by nuclear reactions. From the trace of radioactivities of ^Se after High Performance Liquid Chromatography (HPLC), it was found that the formation of endohedral fullerenes or heterofullerenes is possible by a recoil process following the nuclear reactions. To confirm the produced materials, ab initio molecular-dynamics simulations based on an all-electron mixed-basis approach were carried out. We found that the insertion of Se atom into C_ cage is much easier than that of As and Ge atoms
Weak Values with Decoherence
The weak value of an observable is experimentally accessible by weak
measurements as theoretically analyzed by Aharonov et al. and recently
experimentally demonstrated. We introduce a weak operator associated with the
weak values and give a general framework of quantum operations to the W
operator in parallel with the Kraus representation of the completely positive
map for the density operator. The decoherence effect is also investigated in
terms of the weak measurement by a shift of a probe wave function of continuous
variable. As an application, we demonstrate how the geometric phase is affected
by the bit flip noise.Comment: 17 pages, 3 figure
Geometrical aspects of weak measurements and quantum erasers
We investigate the mechanism of weak measurement by using an interferometric
framework. In order to appropriately elucidate the interference effect that
occurs in weak measurement, we introduce an interferometer for particles with
internal degrees of freedom. It serves as a framework common to quantum eraser
and weak measurement. We demonstrate that the geometric phase, particularly the
Pancharatnam phase, results from the post-selection of the internal state, and
thereby the interference pattern is changed. It is revealed that the
extraordinary displacement of the probe wavepackets in weak measurement is
achieved owing to the Pancharatnam phase associated with post-selection.Comment: 11 pages, 4 figure
Coined quantum walks on percolation graphs
Quantum walks, both discrete (coined) and continuous time, form the basis of
several quantum algorithms and have been used to model processes such as
transport in spin chains and quantum chemistry. The enhanced spreading and
mixing properties of quantum walks compared with their classical counterparts
have been well-studied on regular structures and also shown to be sensitive to
defects and imperfections in the lattice. As a simple example of a disordered
system, we consider percolation lattices, in which edges or sites are randomly
missing, interrupting the progress of the quantum walk. We use numerical
simulation to study the properties of coined quantum walks on these percolation
lattices in one and two dimensions. In one dimension (the line) we introduce a
simple notion of quantum tunneling and determine how this affects the
properties of the quantum walk as it spreads. On two-dimensional percolation
lattices, we show how the spreading rate varies from linear in the number of
steps down to zero, as the percolation probability decreases to the critical
point. This provides an example of fractional scaling in quantum walk dynamics.Comment: 25 pages, 14 figures; v2 expanded and improved presentation after
referee comments, added extra figur
Localization of the Grover walks on spidernets and free Meixner laws
A spidernet is a graph obtained by adding large cycles to an almost regular
tree and considered as an example having intermediate properties of lattices
and trees in the study of discrete-time quantum walks on graphs. We introduce
the Grover walk on a spidernet and its one-dimensional reduction. We derive an
integral representation of the -step transition amplitude in terms of the
free Meixner law which appears as the spectral distribution. As an application
we determine the class of spidernets which exhibit localization. Our method is
based on quantum probabilistic spectral analysis of graphs.Comment: 32 page
Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nine-spined sticklebacks
Abstract The degree to which adaptation to similar selection pressures is underlain by parallel vs. non-parallel genetic changes is a topic of broad interest in contemporary evolutionary biology. Sticklebacks provide opportunities to characterize and compare the genetic underpinnings of repeated marine-freshwater divergences at both intra- and interspecific levels. While the degree of genetic parallelism in repeated marine-freshwater divergences has been frequently studied in the three-spined stickleback (Gasterosteus aculeatus), much less is known about this in other stickleback species. Using a population transcriptomic approach, we identified both genetic and gene expression variations associated with marine-freshwater divergence in the nine-spined stickleback (Pungitius pungitius). Specifically, we used a genome-wide association study approach, and found that ~1% of the total 173,491 identified SNPs showed marine-freshwater ecotypic differentiation. A total of 861 genes were identified to have SNPs associated with marine-freshwater divergence in nine-spined stickleback, but only 12 of these genes have also been reported as candidates associated with marine-freshwater divergence in the three-spined stickleback. Hence, our results indicate a low degree of interspecific genetic parallelism in marine-freshwater divergence. Moreover, 1,578 genes in the brain and 1,050 genes in the liver were differentially expressed between marine and freshwater nine-spined sticklebacks, ~5% of which have also been identified as candidates associated with marine-freshwater divergence in the three-spined stickleback. However, only few of these (e.g., CLDND1) appear to have been involved in repeated marine-freshwater divergence in nine-spined sticklebacks. Taken together, the results indicate a low degree of genetic parallelism in repeated marine-freshwater divergence both at intra- and interspecific levels.Peer reviewe
Wnt5a induces ROR1 to associate with 14-3-3ζ for enhanced chemotaxis and proliferation of chronic lymphocytic leukemia cells.
Wnt5a can activate Rho GTPases in chronic lymphocytic leukemia (CLL) cells by inducing the recruitment of ARHGEF2 to ROR1. Mass spectrometry on immune precipitates of Wnt5a-activated ROR1 identified 14-3-3ζ, which was confirmed by co-immunoprecipitation. The capacity of Wnt5a to induce ROR1 to complex with 14-3-3ζ could be blocked in CLL cells by treatment with cirmtuzumab, a humanized mAb targeting ROR1. Silencing 14-3-3ζ via small interfering RNA impaired the capacity of Wnt5a to: (1) induce recruitment of ARHGEF2 to ROR1, (2) enhance in vitro exchange activity of ARHGEF2 and (3) induce activation of RhoA and Rac1 in CLL cells. Furthermore, CRISPR/Cas9 deletion of 14-3-3ζ in ROR1-negative CLL cell-line MEC1, and in MEC1 cells transfected to express ROR1 (MEC1-ROR1), demonstrated that 14-3-3ζ was necessary for the growth/engraftment advantage of MEC1-ROR1 over MEC1 cells. We identified a binding motif (RSPS857SAS) in ROR1 for 14-3-3ζ. Site-directed mutagenesis of ROR1 demonstrated that serine-857 was required for the recruitment of 14-3-3ζ and ARHGEF2 to ROR1, and activation of RhoA and Rac1. Collectively, this study reveals that 14-3-3ζ plays a critical role in Wnt5a/ROR1 signaling, leading to enhanced CLL migration and proliferation
- …