Study on Photon Activation Analysis of Carbon in Glasses for Fiber Amplifiers by Using the Flow Method for the Rapid Separation of ^<11>C(II. Radiochemistry)

Abstract

We have studied nuclear interference from a matrix produced by (γ, n), (γ, 2n), (γ, p) and (n, γ) reactions and a flow method for ^C separation in order to develop an approach for the photon activation analysis of carbon in InF_3-based fluoride, chalcogenide and tellurite glasses for fiber amplifiers. We found that seventeen radionuclides are produced from these glasses and chemical separation is necessary to determine carbon. For the flow method, which involves the fusion of an irradiated sample with an oxidizer, the conversion of ^C into ^CO_2, and the absorption of ^C in ethanolamine solution, we used a mixture of Pb_3O_4 and B_2O_3 as the oxidizer. We also found that the reaction between ^F(γ, n) and ^Na(γ, αn) in the ethanolamine solution produced ^F contamination with fluoride and chalcogenide glasses and that this flow method can only be applied to tellurite glasses. We confirmed that the chemical yield of the flow method was close to 100 % when determining carbon in standard steel samples by using lithium carbonate as a standard sample. We determined that the carbon concentrations in two kinds of tellurite glass were 8 to 13 and 21 to 28 ppm, respectively

    Similar works