32 research outputs found

    The Effect of Human Activity on Ant Species (Hymenoptera: Formicidae) Richness at the Mont St. Hilaire Biosphere Reserve, Québec

    Get PDF
    The ant (Hymenoptera: Formicidae) fauna of the Mont St. Hilaire Biosphere Reserve, QuĂ©bec, was surveyed in 2002 and 2003. Although overall species richness was high, 10 of 40 total ant species collected were limited to anthropogenically disturbed habitats within the reserve. While only 2 of these 10 species (Tetramorium caespitum (L.) and Lasius niger (L.)) can definitively be considered introduced, areas altered by human activity (representing a small fraction of the reserve’s total area) possess nearly as many unique species as the reserve’s old-growth forest. Although further research will be necessary to determine the consequences of such changes in community structure, this study shows the importance of specifying the extent of biodiversity surveys within protected habitats to more accurately monitor the effectiveness of conservation efforts

    Metabolism And The Rise Of Fungus Cultivation By Ants

    Get PDF
    Most ant colonies are comprised of workers that cooperate to harvest resources and feed developing larvae. Around 50 million years ago (MYA), ants of the attine lineage adopted an alternative strategy, harvesting resources used as compost to produce fungal gardens. While fungus cultivation is considered a major breakthrough in ant evolution, the associated ecological consequences remain poorly understood. Here, we compare the energetics of attine colony-farms and ancestral hunter-gatherer colonies using metabolic scaling principles within a phylogenetic context. We find two major energetic transitions. First, the earliest lower-attine farmers transitioned to lower mass-specific metabolic rates while shifting significant fractions of biomass from ant tissue to fungus gardens. Second, a transition 20 MYA to specialized cultivars in the higher-attine clade was associated with increased colony metabolism (without changes in garden fungal content) and with metabolic scaling nearly identical to hypometry observed in hunter-gatherer ants, although only the hunter-gatherer slope was distinguishable from isometry. Based on these evolutionary transitions, we propose that shifting living-tissue storage from ants to fungal mutualists provided energetic storage advantages contributing to attine diversification and outline critical assumptions that, when tested, will help link metabolism, farming efficiency, and colony fitness.Integrative Biolog

    Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants

    Get PDF
    International audienceMollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts

    Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop?

    Get PDF
    <p>Fungus-growing termites are associated with genus-specific fungal symbionts, which they acquire via horizontal transmission. Selection of specific symbionts may be explained by the provisioning of specific, optimal cultivar growth substrates by termite farmers. We tested whether differences in in vitro performance of Termitomyces cultivars from nests of three termite species on various substrates are correlated with the interaction specificity of their hosts. We performed single-factor growth assays (varying carbon sources), and a two-factor geometric framework experiment (simultaneously varying carbohydrate and protein availability). Although we did not find qualitative differences between Termitomyces strains in carbon-source use, there were quantitative differences, which we analysed using principal component analysis. This showed that growth of Termitomyces on different carbon sources was correlated with termite host genus, rather than host species, while growth on different ratios and concentrations of protein and carbohydrate was correlated with termite host species. Our findings corroborate the interaction specificity between fungus-growing termites and Termitomyces cultivars and indicate that specificity between termite hosts and fungi is reflected both nutritionally and physiologically. However, it remains to be demonstrated whether those differences contribute to selection of specific fungal cultivars by termites at the onset of colony foundation.</p

    Using nutritional geometry to define the fundamental macronutrient niche of the widespread invasive ant <i>Monomorium pharaonis</i>

    Get PDF
    The emerging field of nutritional geometry (NG) provides powerful new approaches to test whether and how organisms prioritize specific nutritional blends when consuming chemically complex foods. NG approaches can thus help move beyond food-level estimates of diet breadth to predict invasive success, for instance by revealing narrow nutritional niches if broad diets are actually composed of nutritionally similar foods. We used two NG paradigms to provide different, but complementary insights into nutrient regulation strategies and test a hypothesis of extreme nutritional generalism in colony propagules of the globally distributed invasive ant Monomorium pharaonis. First, in two dimensions (protein:carbohydrates; P:C), M. pharaonis colonies consistently defended a slightly carbohydrate-biased intake target, while using a generalist equal-distance strategy of collectively overharvesting both protein and carbohydrates to reach this target when confined to imbalanced P:C diets. Second, a recently developed right-angled mixture triangle method enabled us to define the fundamental niche breadth in three dimensions (protein:carbohydrates:lipid, P:C:L). We found that colonies navigated the P:C:L landscape, in part, to mediate a tradeoff between worker survival (maximized on high-carbohydrate diets) and brood production (maximized on high-protein diets). Colonies further appeared unable to avoid this tradeoff by consuming extra lipids when the other nutrients were limiting. Colonies also did not rely on nutrient regulation inside their nests, as they did not hoard or scatter fractions of harvested diets to adjust the nutritional blends they consumed. These complementary NG approaches highlight that even the most successful invasive species with broad fundamental macronutrient niches must navigate complex multidimensional nutritional landscapes to acquire limiting macronutrients and overcome developmental constraints as small propagules

    A 160-kilobit molecular electronic memory patterned at 10^(11) bits per square centimetre

    Get PDF
    The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140nm pitch wires and a memory cell size of 0.0408 ÎŒm^2. Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have ‘no known solution’. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10^(11) bits cm^(-2) (pitch 33 nm; memory cell size 0.0011 mm^2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules 10 served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information

    The farming ant <i>Sericomyrmex amabilis</i> nutritionally manages its fungal symbiont and social parasite

    No full text
    1. When parasites exploit mutualisms involving food exchange, they can destabilise the partnership with costs to interacting partners. For instance, the ant Sericomyrmex amabilis farms fungal symbionts to produce food, but, in so doing, attracts parasitic Megalomyrmex symmetochus guest ants that infiltrate fungus‐farming ant societies and live with their hosts their entire lives.2. The present study examined whether host foraging in parasitised colonies shifts towards nutritional requirements of the parasitic guest ants as inferred from the parasite's elemental content (%C, %N, and C:N).3. Laboratory feeding experiments with nutritionally defined diets indicated that S. amabilis ants harvest protein‐biased substrate, and more total substrate when hosting M. symmetochus relative to when provisioning their fungus gardens and nestmates.4. Field surveys further showed that parasitised colonies incur reductions in fungus garden nutritional quality and quantity, brood mass, and host worker body condition. And yet these costs appear manageable across growing seasons, as parasitised fungal cultivars appear to provide sufficient nutrition for stable populations of host ants.5. The approach developed here shows how behavioural strategies for nutrient regulation can extend beyond the needs of the individual to entire fungus‐farming systems, and implies that S. amabilis dynamically adjusts collective foraging strategies when parasitised to enhance long‐term symbiotic stability
    corecore