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Abstract

The emerging field of nutritional geometry (NG) provides powerful new approaches to test

whether and how organisms prioritize specific nutritional blends when consuming chemi-

cally complex foods. NG approaches can thus help move beyond food-level estimates of

diet breadth to predict invasive success, for instance by revealing narrow nutritional niches if

broad diets are actually composed of nutritionally similar foods. We used two NG paradigms

to provide different, but complementary insights into nutrient regulation strategies and test a

hypothesis of extreme nutritional generalism in colony propagules of the globally distributed

invasive ant Monomorium pharaonis. First, in two dimensions (protein:carbohydrates; P:C),

M. pharaonis colonies consistently defended a slightly carbohydrate-biased intake target,

while using a generalist equal-distance strategy of collectively overharvesting both protein

and carbohydrates to reach this target when confined to imbalanced P:C diets. Second, a

recently developed right-angled mixture triangle method enabled us to define the fundamen-

tal niche breadth in three dimensions (protein:carbohydrates:lipid, P:C:L). We found that col-

onies navigated the P:C:L landscape, in part, to mediate a tradeoff between worker survival

(maximized on high-carbohydrate diets) and brood production (maximized on high-protein

diets). Colonies further appeared unable to avoid this tradeoff by consuming extra lipids

when the other nutrients were limiting. Colonies also did not rely on nutrient regulation inside

their nests, as they did not hoard or scatter fractions of harvested diets to adjust the nutri-

tional blends they consumed. These complementary NG approaches highlight that even the

most successful invasive species with broad fundamental macronutrient niches must navi-

gate complex multidimensional nutritional landscapes to acquire limiting macronutrients and

overcome developmental constraints as small propagules.
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Introduction

The factors enabling a species to thrive outside its native range include propagule pressure [1],

the absence of natural enemies [2], and the ecological match between its introduced and native

habitat [3,4]. Invasive establishment is also governed by a species’ ability to acquire nutrition-

ally suitable food following introduction [5,6]. Despite this simple premise, foods are actually

complex mixtures of water, fibers, macronutrients (i.e. proteins, carbohydrates, and lipids),

micronutrients (e.g. Na, P, K), toxins, and vitamins [7,8]. And, while theory [9,10] and empiri-

cal data [11] support that invasive species tend to be dietary generalists, few studies have

revealed the specific nutritional dimensions defining this wide dietary niche breadth [12,13].

Nutritional constraints are likely to be especially important during early phases of an invasion

since organisms must typically survive a bottleneck of small population size, before other

behavioral and life history traits conferring invasive success can be expressed.

In recent years, nutritional geometry (NG) has become a powerful hypothesis-driven

approach for visualizing how taxa from slime molds [14] to gorillas [15] prioritize multiple

competing nutritional requirements to maximize their fitness [7]. Since these analyses explic-

itly define foods as mixtures of multiple covarying nutrients, it is possible to test the hypothesis

that successful invaders have exceptionally wide physiological tolerances for nutritionally

imbalanced foods, while describing an organism’s ‘fundamental macronutrient niche’ in sev-

eral dimensions of co-varying nutritional availability [12]. In the present study, we explore

multidimensional nutritional requirements and strategies for meeting those requirements in

the invasive ant Monomorium pharaonis. We do this by employing two different, but comple-

mentary NG paradigms: 1) a 2-D protein:carbohydrate (P:C) approach to visualize how and

why colonies prioritize specific nutrients when prevented from reaching their self-selected

optimum, and 2) a 3-D protein:carbohydrate:lipid (P:C:L) approach to map the fundamental

macronutrient niche of M. pharaonis.
Thought to be the world’s most widely distributed non-native ant species, M. pharaonis has

been found in so many regions for so many years that its native habitat in Asia has only

recently been triangulated [16]. Populations of M. pharaonis are nearly entirely limited to the

human-built world, where they can access plentiful foods and stable abiotic conditions, and

where they rarely displace native species [17]. And, while M. pharaonis also exhibits a suite of

life history traits (i.e. polygyny and polydomy) favoring its ecological success as massive colo-

nies [18], these traits are likely expressed only when colonies reach large sizes, after propagules

have survived founding bottlenecks. Below, we describe the NG framework used in the present

study, focusing on the nutritional dimensions enabling small propagules to rapidly increase

their colony size.

NG studies typically focus on foraging tradeoffs made when organisms are confined in labora-

tory experiments to chemically defined diets with two co-varying nutrients, usually protein and

carbohydrates [19]. In such 2-D choice experiments, organisms feed between two diets with

imbalanced protein:carbohydrate (P:C) ratios, selecting their own intake target, defined as the

blend of protein and carbohydrates that maximizes their performance (Fig 1A). In no-choice

experiments, organisms are confined to single diets and move up a nutritional rail reflecting that

diet’s specific P:C ratio (Fig 1B). We can then connect intake values across no-choice diet treat-

ments to visualize a rule of compromise (Fig 1B) that reflects a strategy to approach the intake tar-

get by over-eating or under-eating one macronutrient to acquire the other limiting nutrient.

Rules of compromise can be used to infer the degree of macronutrient specialization [7].

Generalists (e.g. cockroaches; [20]) tend to exhibit the equal-distance rule, with diagonal intake

arrays indicating similar excess harvest of both macronutrients to reach the intake target for

the other limiting macronutrient (Fig 1B). Macronutrient specialists (e.g. host-specific

Nutritional tradeoffs in an invasive ant
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herbivores; [21]) typically exhibit the closest-distance rule with curved intake arrays indicating

inflexible intake of one or both imbalanced nutrients relative to the intake target (Fig 1B).

While equal-distance arrays reflect the generalist forager expectation of finding other comple-

mentary foods in the environment to redress temporary nutritional imbalance, closest-dis-

tance arrays reflect that specialists lack such an expectation since they only consume a single

food type [19].

Fig 1. Schematic figure showing how 2-D and 3-D nutritional geometry approaches can identify strategies for prioritizing competing nutritional needs. (A) In

2-D choice experiments, animals reveal their intake target as the nutritional blend that maximizes performance (blue dot). Here, an animal has consumed four

successive meals, switching between carbohydrate-biased and protein-biased diets to reach a slightly carbohydrate-biased intake target (adapted from [19]). (B) In 2-D

no-choice experiments, animals reveal a rule of compromise intake array when confined to single nutritionally imbalanced diets that constrain their intake P:C ratio to

‘nutritional rails’ extending from the origin. Here, colonies were confined to 5 P:C diets and cumulative intake values were measured for each diet treatment (orange

dots). Dashed lines connect these intake values and reflect decisions about over-harvesting one macronutrient to avoid under-harvesting a more crucial limiting

macronutrient relative to the intake target (blue dot). Generalist consumers tend to obey the ‘equal distance rule’, with a straight-line array, as they expect to redress a

temporary imbalance by switching to another complementary food later. Specialist consumers tend to obey the ‘closest distance rule’, with a convex array reflecting

efforts to stay as close to the intake target as possible (adapted from [7]). (C) Using 3-D nutritional landscapes, a fundamental macronutrient niche can be visualized

with three nutrient mixtures shown in bivariate plots [22]. Here, each black dot is a specific mixture of protein, carbohydrates, and lipids (P:C:L). Protein and

carbohydrate values are plotted on X and Y axes respectively, and lipids are plotted as diagonal lines with negative slopes that intersect P:C:L points with the sum of the 3

nutrients adding to 100%. In this example, organisms are provided seven P:C:L diets (e.g. 10:10:80 has 10% P + 10% C + 80% L) in a no-choice experiment. Diet harvest

and performance are then mapped by interpolating between values measured at each diet (adapted from [23]). (D) We can define the fundamental macronutrient niche

(FMN) by mapping regions of maximal diet harvest and/or consumption across the P:C:L landscape (adapted from [12]).

https://doi.org/10.1371/journal.pone.0218764.g001

Nutritional tradeoffs in an invasive ant

PLOS ONE | https://doi.org/10.1371/journal.pone.0218764 June 20, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0218764.g001
https://doi.org/10.1371/journal.pone.0218764


NG also provides a graphical framework for visualizing intake and performance across

three-component dietary mixtures (e.g. protein, carbohydrates, and lipids; [22]). This

approach uses nutritional landscapes to visualize an organism’s fundamental macronutrient

niche (hereafter FMN) as the area where introduced populations could successfully establish

by consuming only that blend of macronutrients [12] (Fig 1C). In laboratory experiments, the

3-D approach involves a no-choice experiment with several chemically-defined protein:carbo-

hydrate:lipid (P:C:L) diets that yield macronutrient maps of intake and performance [23] (Fig

1C). Nutritional landscapes highlight likely invasive species as those with intrinsically broader

FMN that improve the odds of acquiring nutritionally suitable foods in an introduced habitat

[12] (Fig 1D).

Most ant species are food generalists, opportunistically foraging widely within broad mac-

ronutrient categories, for example scavenging across species of protein-rich prey items [24].

However, ant colonies also reliably harvest specific macronutrient intake targets in feeding

experiments [25–27]. We thus used a 2-D P:C feeding experiment with M. pharaonis propa-

gules to first visualize whether it defends an intake target, and then test the prediction of a gen-

eralist equal-distance intake array. We next used a 3-D approach to visualize the FMN for the

first time for any ant species, exploring whether and how M. pharaonis colonies selectively for-

age across a P:C:L landscape. By comparing maps of diet consumption and colony perfor-

mance, we further tested whether colonies face tradeoffs between brood production (predicted

to be fueled by protein) and adult worker maintenance (predicted to depend on carbohy-

drates) as they increase colony size from small introduced propagules [28,29], and whether lip-

ids can provide an alternative non-protein energy source mediating a growth-survival tradeoff

[23]. Since ant colonies can selectively store and dispose of harvested nutrients [25,30], we also

used colored diets to test a hypothesis of post-harvest nutrient regulation, determining

whether harvested macronutrients were differentially consumed, hoarded (inside the nest), or

scattered (outside the nest).

Methods

Experimental setup

We established M. pharaonis propagules generated from a lab population of ants originally col-

lected from eight source populations that span the global distribution of this species in Florida

(n = 2 populations), Texas (n = 2 populations), Malaysia (n = 1), London (n = 1), Warsaw

(n = 1), and Ghana (n = 1) [31,32]. For over a decade, a blended stock colony made by mixing

ants from all eight source populations has been maintained in many plastic bins on sucrose-

agar diet and freshly killed crickets in climate-controlled rooms at 27˚C and 50% R.H (see S1

Appendix for detailed methods). All experimental colonies described below are composed of

ants blended from the eight source populations, but maintained in separate plastic bins (n = 6

bins 2-D experiment, n = 8 bins 3-D experiment). We removed ants from bins with a small

paintbrush and combined them into petri dishes where they rapidly relocated to nesting areas.

During a brief acclimation period prior to feeding experiments, newly formed colonies were

fed ad lib amounts of sucrose-agar diet. During feeding experiments, lids containing pre-

weighed experimental foods were placed in the foraging area near the nest, along with ad lib
water. Diets were modified versions of a published protein:carbohydrate (P:C) [33] and a pro-

tein:carbohydrate:lipid (P:C:L) diet [23]. Recipes for 2-D P:C diets (S1 Table) were standard-

ized for total macronutrient concentrations (100 g/L), while manipulating macronutrient

ratios, since protein and carbohydrates contain roughly similar amounts of energy on a per-

gram basis [33]. The 3-D P:C:L diet recipes (S2 Table) were standardized for total energy con-

tent across diets (ca. 675 joules), while manipulating the relative energy content (joules)

Nutritional tradeoffs in an invasive ant
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provided by each macronutrient (Fig 1C, as per [23]), since lipids contain roughly twice the

amount of energy as carbohydrates and proteins [34]. These P:C:L diets contained lipids in a

4:1:1:1:1 ratio of lard:fish-oil:sunflower-oil:rapeseed-oil:peanut-oil, selected based on pilot caf-

eteria-style feeding experiments showing strongest recruitment to lard and similar (but lower)

recruitment to the four selected oils, relative other available options (S1 Appendix).

We measured diet harvest by placing ca. 1-cm3 pre-weighed (initial wet mass) diet cubes

inside colony foraging areas each day, and then oven-drying these and cubes of control diet at

60˚C for 24 hours. We then weighed the dry diets to the nearest 1 μg (AG285 Mettler Toledo)

and calculated cumulative diet harvest across days of the experiment (S1 Appendix). We also

added food coloring (Dr. Oetker TM) to each diet just prior to blending all ingredients, so we

could separate it from debris when collecting hoarded (piled within the defined nest area) and

scattered (discarded in the foraging area) diet at the ends of feeding experiments. Consumed

diet was harvested diet minus the summed mass of hoarded and scattered diet.

2-D nutritional geometry experiment

We performed a choice experiment with two separate choice combinations (1:6 vs. 3:1 or 1:3

vs. 6:1 P:C) to test whether colonies reliably selected the same intake target (Fig 1A). We also

performed a no-choice experiment (confining colonies to single 1:6, 1:3, 1:1, 3:1, or 6:1 P:C

diets) to measure foraging along intake rails and determine the shape of the intake array (Fig

1B). We assembled 64 colonies, each with 200 workers and a scoop (0.5 x 0.5 x 0.15 cm) of

brood and collected dead workers from each colony during a 4-day acclimation period, replac-

ing them on day 1 of the experiment to standardize initial colony size. We assigned 24 colonies

to the choice experiment (n = 12 colonies per choice pairing treatment and removed one col-

ony from each choice treatment due to missing intake data) and 40 colonies to the no-choice

experiment (n = 8 colonies per diet treatment). Over 12 days in both choice and no-choice

experiments, we replaced old diet with fresh each day, counted and collected dead workers

every fourth day during the experiment, and counted the remaining living workers on day 12

(S1 Appendix).

3-D nutritional geometry experiment

We established 35 colonies, each with 200 workers and four queens, and let them initiate

brood production during an acclimation period of from 9 to 11 days. Just before day 1 of the

experiment, we replaced any dead workers and assigned colonies to one of seven P:C:L diets

(33:33:33, 80:10:10, 10:80:10, 10:10:80, 45:45:10, 10:45:45, 45:10:45) in a no-choice experiment

(n = 5 colonies per diet treatment) (Fig 1C). Over 14 days, we replaced diet and collected and

counted dead workers each day. Following the experiment, we counted and weighed (dry

mass) pupae, larvae, and workers and counted all eggs. This experiment length enabled us to

accurately measure adult worker mortality, since egg to adult durations can vary from 22 to 54

days (i.e. maturing brood were unlikely to replace dead workers [35]), but also precluded

meaningful analysis of larvae and pupae production, since too few eggs reached these

advanced developmental stages over 14 days (S1 Appendix).

Statistical analyses

2-D analyses. We used the R v.3.2.4 statistical environment [36] to perform all statistical

analyses. We first used ANOVAs testing for differences in the response variables harvested

diet, consumed diet, hoarded diet, and scattered diet across the categorical explanatory vari-

able of diet treatment in separate analyses for the choice experiment (1:6 + 3:1 P:C vs. 1:3 + 6:1

P:C) and the no-choice experiment (1:6, 1:3, 1:1, 3:1, 6:1 P:C). The response variables of

Nutritional tradeoffs in an invasive ant
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harvested and consumed diet were further subdivided into total, protein, and carbohydrate

amounts, based on calculations from the defined P:C recipes [33]. Significant main effects

were followed with post-hoc Tukey tests. In the choice experiment, we further analyzed the

total amounts of protein and carbohydrates that were hoarded and scattered by colonies

(based on diet recipes). We further used paired t-tests (four separate analyses for two choice

pairing treatments and two response variables) to test the null hypothesis that colonies

hoarded and/or scattered the same mass of the carbohydrate-biased or protein-biased diet,

fragments of which could be sorted by color. We used the glmer function in the lme4 package

to perform generalized linear mixed models with a binomial distribution and a logit link func-

tion with separate analyses for the choice and no-choice experiments examining how the

response variable proportion of living workers (alive / (alive + dead)) varied with the explana-

tory variables of day, diet treatment, and their interaction. We also performed a combined test

comparing the response variable proportion of living workers across choice and no-choice

experiments, with the explanatory variables of experiment (choice, no-choice), day, and their

interaction. Initial colony bin was added as a random factor.

3-D analyses. We performed GLM analyses testing for differences in foraging response

variables (harvested diet, consumed diet, scattered diet, hoarded diet) across the P:C:L diet

treatments, further exploring significant results using post-hoc Tukey tests. We then used

Response Surface Models (RSM) to analyze the influence of the relative amount of each macro-

nutrient in diets on response variables, identifying relationships between variables via second-

degree polynomial models [37,38]. Since the relative amount of each nutrient results from the

combination of the other two nutrients (i.e. the summed amounts of the three nutrients always

equals one), the three nutrients cannot be included in the same model as explanatory variables.

We thus performed separate RSM models for each response variable: the four foraging vari-

ables and two performance variables (percent worker survival, egg number), where the linear

and quadratic components for protein and carbohydrate intake and the cross-product of pro-

tein and carbohydrate were added as explanatory variables. Lipid effects on response variables

reflect P:C:L diet recipes, such that high values of either protein or carbohydrates indicate low

lipid values, low values of both protein and carbohydrates indicate high lipid values, and low

to medium values of both protein and carbohydrates indicate medium lipid values.

We performed these analyses using the function rsm from the rsm package [39], first run-

ning complete models. If quadratic terms were not significant, we ran models again without

non-significant quadratic terms. To help interpret the patterns, we estimated P:C:L ratios at

which the response is maximized by using the function optimx from package optimx [40] in R.

For response variables with significant overall RSM models, we then visualized P:C:L land-

scapes using the fields package [41] to calculate non-parametric thin-plate splines [14,42] and

map foraging and performance variables. We set the topological resolution of response sur-

faces to λ = 0.001 as a smoothing parameter.

Results

In the 2-D choice experiment, colonies consistently selected slightly carbohydrate-biased 1:1.5

P:C intake target, harvesting similar amounts of total diet (F1,20 = 1.9, p = 0.185), protein (F1,20

= 0.9, p = 0.352) and carbohydrates (F1,20 = 2.43, p = 0.135) in both choice pairings (Fig 2).

Despite similar harvesting strategies, colonies consumed more of their harvested diet when

provided the more extreme carbohydrate-biased 1:6 vs. 3:1 P:C choice pairing (F1,20 = 12.1,

p = 0.002; Fig 2). However, it was not immediately clear whether colonies regulated this con-

sumption by processing nutrients in their nests, since colonies hoarded (F1,20 = 2.5, p = 0.131)

and scattered (F1,20 = 2.7, p = 0.115) similar amounts of their harvested diet in both diet

Nutritional tradeoffs in an invasive ant
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pairings. Within colonies, we next used sorted colored diets to show that colonies preferen-

tially hoarded slightly more carbohydrate-biased diet than protein-biased diet in both 1:3 vs.

6:1 P:C (t10 = 3.3, p< 0.007) and 1:6 vs. 3:1 P:C (t10 = 4.3, p< 0.001) pairing treatments (Fig

3A), while also hoarding (averaged (± SD) across diet pairing treatments) only 10 ± 7.8% of

the diet they harvested. Scattered diet amounts were more variable, being even between diets

in the more protein-biased 1:3 vs. 6:1 pairing (t10 = 0.8; p = 0.435) while representing only

5.2 ± 2.5% of the harvested diet (Fig 3B), but with carbohydrate-biased diet being more heavily

scattered when colonies were provided the more extreme carbohydrate-biased 1:6 vs. 3:1 P:C

pairing (t10 = 6.3; p< 0.001) with 11.0 ± 8.8% of harvested diet being scattered (Fig 3B).

In the 2-D no-choice experiment, colonies obeyed the equal distance rule (Fig 2), harvesting

similar amounts of diet across no-choice treatments (F4,35 = 2.0, p = 0.120) (S1 Fig). Colonies

thus harvested significantly more carbohydrates when confined to high-carbohydrate diets

(1:6, 1:3 P:C) (F4,35 = 36.7, p< 0.001; S1 Fig) and significantly more protein on high-protein

diets (6:1, 3:1 P:C) (F4,35 = 50.3, p< 0.001; S1 Fig). In this way, colonies let both nutrients

fluctuate while regulating total diet harvest (Fig 2). Colonies further hoarded (F4,35 = 1.0,

Fig 2. Nutritional geometry in two dimensions. In a choice experiment lasting 12 days, colonies reliably harvested

and consumed a slightly carbohydrate-biased 1:1.5 P:C intake target in both choice diet combinations. In a no-choice

experiment, colonies exhibited a generalist equal distance intake array (dashed lines) by harvesting similar excesses of

protein and carbohydrates relative to their intake target. Diet consumption (subtracting scattered and hoarded

amounts from harvested diet) tightly matched diet harvest. Solid black lines show nutrient rails for each no-choice P:C

diet treatment. Choice experiment harvest values are provided with bi-directional error bars, and no-choice harvest

values provided with pythagorean standard error bars aligned with the intake rail (as per [62]).

https://doi.org/10.1371/journal.pone.0218764.g002
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p = 0.416) and scattered (F4,35 = 1.2, p = 0.314) similar amounts of total diet across P:C diet

treatments, while hoarding (14.4 ± 9.8%) or scattering (7.8 ± 5.4%) small fractions of their

total harvested diet. Although we did not detect nutrient-specific hoarding or scattering behav-

ior, colonies still consumed more of the highest protein 6:1 P:C diet than either of the low-pro-

tein diets (1:3 and 1:6 P:C) (F4,35 = 5.1, p = 0.002; Fig 2 and S2 Fig). Thus, while colonies

confined to no-choice diet treatments over-consumed both carbohydrates (F4,35 = 56.0,

p = 0.0001; S2 Fig) and protein (F4,35 = 93.0, p< 0.001; S2 Fig) relative to the intake target (Fig

2), they over-consumed high-protein diets to a greater degree.

This elevated protein consumption on no-choice diets (especially on 3:1 and 6:1 P:C diets;

S2 Fig) was associated with reduced adult worker survival (χ2
1 = 70.4, p = 0.0001), which

became more pronounced at later sampling days (χ2
1 = 146.9, p< 0.001) (S3 Fig). Similarly, in

the choice experiment, survival was lower in the more protein-biased 1:3 vs. 6:1 P:C pairing

treatment relative to the 1:6 vs. 3:1 pairing treatment (χ2
1 = 18.5, p< 0.001; S3 Fig). As

expected, when comparing between the no-choice and choice experiments, adult workers had

lower mortality over time when they could select their own intake target in the choice experi-

ment relative to when they were confined to a single diet in the no-choice experiment (χ2
1 =

40.9, p< 0.001).

In the 3-D experiment (as in the 2-D experiment), both diet harvest (Fig 4A) and diet con-

sumption (Fig 4B) increased linearly as the relative protein and carbohydrate content

increased, with colonies maintaining high consumption levels on the most protein-rich diets,

but not on the most carbohydrate-rich diets (Table 1 and S3 Table). Diet nutrients thus had

strong effects on diet harvest (explaining 63% of total variation) and diet consumption

(explaining 81% of total variation) (Table 1). The fundamental macronutrient niche (FMN) of

M. pharaonis, visualized in the bright red areas across the diet consumption landscape (Fig 4B)

spans a wide protein and carbohydrate gradient, with maximal diet consumption (44:56:0 P:C:

L, Table 1) occurring at intermediate levels of protein and carbohydrates, but the lowest lipid

levels (Fig 4B). As in the 2-D experiment, colonies did not appear to rely on post-harvest

Fig 3. Post-harvest diet processing (± SE) after 12 days in the 2-D choice experiment, based on analyzing uneaten colored diet. (A) Colonies tended to

preferentially hoard (retained inside the nest) carbohydrate-biased diets in both the 1:3 vs. 6:1 P:C pairing and the 1:6 vs. 3:1 P:C pairing treatments. (B) Colonies

scattered diets evenly in the 1:3 vs. 6:1 P:C treatment, but scattered significantly more of the carbohydrate-biased diet in the 1:6 vs. 3:1 P:C treatment. Asterisks indicate

the results of paired t-tests, testing difference within pairings between either hoarded or scattered diet (dry mass, mg), with n.s. = not significant, � p< 0.05, �� p< 0.01,
��� p< 0.001).

https://doi.org/10.1371/journal.pone.0218764.g003
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nutrient processing to target a narrower region of their harvested diet landscape, since P:C:L

diet treatment explained 0% of variation in hoarded diet and 12% of variation in scattered diet,

with non-significant RSM models (Table 1). Moreover, most of the harvested diet was con-

sumed (max ca. 80 mg) rather than hoarded (max ca. 8 mg) or scattered (max ca. 4 mg) (S4

Fig and S3 Table).

Fig 4. Nutritional landscapes visualize the fundamental macronutrient niche (FMN) of M. pharaonis in three dimensions (proteins, carbohydrates,

and lipids; P:C:L). (A) Colonies harvested maximal amounts across a broad range of protein-biased and carbohydrate-biased diets, while avoiding lipid-

biased diets. (B) Colonies consumed most of the diet they harvested regardless of the P:C:L content. (C) The survival percentage of adult workers was highest

on diets with moderate to high carbohydrates, low protein and low to moderate lipids. In contrast, moderate to high amounts of protein yielded the lowest

worker survival, even as carbohydrates and lipids increased. (D) Colonies produced the most eggs when colonies were confined to diets with similar levels of

protein and carbohydrates and low lipid content, and the fewest eggs on all diets where protein availability was low, regardless of carbohydrate and lipid

amounts. Isoclines (red areas are highest values and blue areas are lowest) indicate dry mass of diet (mg), percent worker survival, or egg numbers, with scale

bars adjusted relative to the range of observed values. Landscapes comprise 7 P:C:L ratios (see Fig 1C) and diet percentages (axis labels) indicate energy

content provided by each macronutrient, with total energy content available standardized across diets (see Methods). Response surface regressions

underlying colored heat maps were significant in each panel (Table 1).

https://doi.org/10.1371/journal.pone.0218764.g004
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Diet nutrient composition explained substantial variation in adult worker survival (55%,

Table 1, Fig 4C) and colony growth rate (egg number, 23%, Table 1, Fig 4D). First, adult

worker survival significantly increased to a maximum of> 70% of the initial workforce with

rising carbohydrate content, although leveling out at P:C:L diets with� 45% carbohydrates.

Second, protein content did not significantly directly impact adult worker survival (Fig 4C,

Table 1), but it modulated the effects of dietary carbohydrates, with the highest worker survival

levels occurring at even levels of carbohydrate:lipid and low levels of protein (Fig 4C, Table 1).

Third, protein lowered worker survival as it increased relative to carbohydrates (Fig 4C,

Table 1, interaction effects). Fourth, while carbohydrate-rich diets increased adult worker sur-

vival, they had negative impacts on egg number, which decreased significantly in a linear fash-

ion as carbohydrate increased (Fig 4D, Table 1). This negative carbohydrate effect on colony

Table 1. Statistical output from Response Surface Models (RSM) analyses of 3-D feeding experiment.

Effect Response variable Estimate Std. Err. t p R2 Lack of fit (p) Maximum response

Harvested diet <0.0001 0.63 0.307

Protein 0.669 0.158 4.2 0.0002 54

Carbohydrate 1.705 0.536 3.2 0.0034 46

Protein2 - - - ns

Carbohydrate2 -0.015 0.005 -2.9 0.07

Protein�Carbohydrate -0.000 0.007 -0.02 0.9865

Consumed diet <0.0001 0.81 0.897

Protein 0.501 0.104 4.8 <0.0001 44.3

Carbohydrate 1.323 0.354 3.7 0.0008 55.6

Protein2 - - - ns

Carbohydrate2 -0.011 0.004 -3.3 0.0025

Protein�Carbohydrate 0.009 0.005 1.8 0.0835

Hoarded diet 0.4111 0.00 0.342

Scattered diet 0.0921 0.12 0.425

Percent surviving workers <0.0001 0.55 0.812

Protein 0.225 0.557 0.4 0.689 0.0

Carbohydrate 7.120 1.890 3.8 0.0007 61.8

Protein2 - - - ns

Carbohydrate2 -0.058 0.019 -3.10 0.0041

Protein�Carbohydrate -0.079 0.025 -3.10 0.0040

Number of eggs 0.0108 0.23 0.856

Protein -0.166 0.166 -1.0 0.3241 56.8

Carbohydrate -0.400 0.170 -2.4 0.0251 43.2

Protein2 - - - ns

Carbohydrate2 - - - ns

Protein�Carbohydrate 0.020 0.006 3.1 0.0038

The RSM analyses tested how the relative dietary content of protein, carbohydrates, and their interaction affect foraging response variables (harvested diet, consumed

diet, hoarded diet, scattered diet), and colony performance response variables (percent surviving workers, number of eggs). Harvested diet was separated into hoarded

(inside the nest), scattered (in the foraging area) and consumed (harvested–(hoarded + scattered)) components. Lipid effects on response variables reflect P:C:L diet

recipes, such that high values of either protein or carbohydrates indicate low lipid values, low values of both protein and carbohydrates indicate high values of lipids, and

low to medium values of both protein and carbohydrates indicate medium values of lipids. Thus, maximum response levels for lipids can be inferred by subtracting

maximum responses for protein and carbohydrates from 100. The term ‘ns’ refers to non-significant treatment effects within RSM models that were removed from the

final analyzed model. For the lack of fit statistic, non-significant p values (> 0.05) indicate the overall model adequately met the assumptions of the RSM. We did not

interpret non-significant overall models for hoarded diet and scattered diet and thus did not include P:C:L landscapes based on these non-significant response variables.

https://doi.org/10.1371/journal.pone.0218764.t001
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growth was strongest when protein simultaneously decreased (Fig 4D, Table 1, interaction

effects).

These results support a tradeoff between colony performance traits since adult worker sur-

vival (highest value at 0:62:38 P:C:L; Table 1) and egg production (highest value at 57:43:0 P:C:

L; Table 1) were maximized on different regions of the 3-D landscape surface (Fig 4C and 4D).

Additionally, lipids did not appear to provide an alternative metabolic fuel resolving this

growth-survival tradeoff since: 1) lipids had minor effects on adult survival (Fig 4C), 2) the

highest colony growth occurred on diets with the lowest lipid levels (Fig 4D), and 3) lipids

were not sufficient to rescue colony growth when comprising 80% of dietary macronutrients

(i.e. when protein and carbohydrates were limiting) (Fig 4D, Table 1).

Discussion

We combined NG paradigms to place a widespread food generalist on a generalist-specialist

continuum of macronutrient regulation, while also linking its fundamental macronutrient

niche (FMN) breadth with its colony founding performance. Using 2-D arrays, we show that

M. pharaonis colonies exhibit a generalist equal-distance strategy of regulating total diet har-

vest and consumption levels even if this requires over-consuming both protein and carbohy-

drates relative to their respective intake targets. We next show that colonies navigate a 3-D P:

C:L landscape by foraging broadly between carbohydrate-biased and protein-biased diets,

while managing a tradeoff between worker survival (maximized by extreme C-biased diets)

and colony egg production (maximized by balanced P:C diets). Lipids do not appear to suffice

as an alternative energy source for colonies, since lipid-biased diets did not enable colonies to

avert this survival-growth tradeoff under P and C limitation. An important next step will be to

test whether and how the realized macronutrient niche of M. pharaonis approaches its FMN

over time during invasions as colony demographic demands change [5], and across invasive

populations confined to different nutritional environments [43].

Our results suggest that workers of M. pharaonis overharvest protein in ways that prioritize

colony growth over individual survival when present in small isolated propagules, which may

enable colonies to overcome founding bottlenecks en route to invasive success [31]. Compara-

tive studies with non-invasive Monomorium species will be useful to test whether M. pharaonis
uniquely prioritizes colony growth, and whether such strategies are more likely to evolve in

invasive ants like M. pharaonis with sterile workers and massive colonies that only propagate

as isolated lineages (e.g., [44]). Moreover, the broad FMN of M. pharaonis may also reflect its

specialized existence limited to the human-built world, where plentiful food subsidies likely

provide unusual and widely varying nutritional blends relative to foods available in natural

habitats [45,46]. More generally, the invasive ant species studied to date further appear more

likely to exhibit generalist macronutrient foraging strategies (i.e. the equal distance rule

[26,30]) than non-invasive ant species exhibiting closest distance strategies ranging from pri-

oritizing carbohydrate regulation (generalist scavenger Rhytidoponera sp. [25]) to protein reg-

ulation (fungus-farming detritivore, Mycocepurus smithii [42]). In this context, NG techniques

will likely be useful for detecting strategies of nutrient regulation unique not only to invasive

species, but also unique to specific invasive strategies.

More generally, colonies of M. pharaonis share a suite of behavioral traits (i.e. fast discovery

and dominance of resources) and life history traits (i.e. many queens, reproduction by colony

budding) with other successful invasive ants [16,47,48]. Here, we show an additional trait

favoring invasiveness—the tendency to overharvest nutritionally variable resources relative to

immediate colony needs, which ensures stored food availability in a fluctuating environment,

while also lowering food available to potential competitors. A study of Solenopsis invicta, an
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invasive ant closely-related to Monomorium, found that it couples an overharvesting strategy

with targeted hoarding of protein and consumption of carbohydrates to consume a narrow

subset of harvested nutrients [30]. Monomorium pharaonis may have a broader FMN since it

generally consumes most of the food it collects and in macronutrient blends matching those it

harvests. An exception was in the 2-D choice experiment, where colonies exhibited slightly

higher levels of carbohydrate-biased diet hoarding and scattering, although these post-process-

ing amounts were a small fraction of harvested diet and were not sufficient to alter the intake

target among diet pairing treatments. We note however, that we did not analyze the nutritional

content of hoarded and scattered diet, so are unable to determine whether ants may have

manipulated harvested diet in subtle ways to selectively save or dispose of specific nutrients

within diets, as was seen in Rhytidoponera sp. as their colony demography changed [25].

By using the recently developed right-angled mixture approach [22] for the first time to

study a social insect, we provide a new way to visualize an often cited (but seldom demon-

strated) nutritional tradeoff between ant colony growth (protein-biased) and adult worker sur-

vival (carbohydrate biased) [28,29]. Specifically, we demonstrate that the carbohydrate-rich P:

C:L blends maximizing adult survival performance do not overlap with more protein-rich

regions maximizing egg production, while also showing that M. pharaonis colonies forage for

broadly variable P:C blends spanning these performance maxima (Fig 4). This result echoes

nutritional foraging tradeoffs faced by female D. melanogaster fruit flies that prioritize maxi-

mizing egg-laying rates (maximized by 1:2 P:C) over their own lifespans (maximized by 1:16 P:

C) [49]. However, it is possible that sterile M. pharaonis workers have more latitude to navigate

nutritional landscapes while avoiding longevity-reproduction tradeoffs, since they regurgitate

harvested proteins to provision developing brood produced by the queen, rather than assimi-

lating (as in the flies) them to sustain their own internally developing eggs.

NG studies have increasingly demonstrated the power of exploring the interactive effects of

nutrient co-limitation on organism performance, rather than focusing on any single nutrient in

isolation [7]. For instance, while little is known about how lipid requirements may interact with

P:C requirements, the P:C:L landscapes used here show that dietary lipids did not limit worker

mortality on protein-biased diets or facilitate colony growth on carbohydrate-biased diets.

Thus, lipids do not appear interchangeable with carbohydrates as energy sources that maximize

colony performance [23]. This is somewhat surprising since M. pharaonis is known to forage

oils (e.g., peanut oil) in single-food feeding experiments [44,50], since many sterols and unsatu-

rated fatty acids cannot be synthesized by insects [51], and since lipids can generally provide

important metabolic fuel during periods of food scarcity [52], during insect growth and devel-

opment [53], and during ant mating flights [54]. Additionally, ant colony nutritional require-

ments may also interact with seasonal variation in nutritional foraging decisions [55–57] that

may in turn reflect the specific nutritional demands of annual life history cycles. For instance, a

colony’s allocation to increased colony growth and reproduction can deplete the fat stores in

adult workers [58,59], and this may in turn influence the decisions of foragers to harvest and

hoard lipids. The integration of such longer term colony dynamics will be an important next

step. Finally, beyond adding new macronutrients to longitudinal NG studies of single colonies

in the field, additional mechanistic insights will be gained by also parsing carbohydrates among

diverse energetic carbon sources [60], proteins into specific amino acids [61], and selecting lip-

ids from the broad chemical and functional diversity to test specific hypotheses.

Supporting information

S1 Fig. Colonies regulate A) total diet harvest levels, while allowing their harvest of (A)

carbohydrate and (B) protein to fluctuate. Cumulative dry diet mass amounts (± SE) was

Nutritional tradeoffs in an invasive ant

PLOS ONE | https://doi.org/10.1371/journal.pone.0218764 June 20, 2019 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218764.s001
https://doi.org/10.1371/journal.pone.0218764


harvested by colonies over 12 days during the 2-D no-choice P:C diet experiment. Colonies

consistently harvested similar amounts of diet across P:C diet treatments, and thus harvested

more carbohydrates on high-carbohydrate diets, and more protein on high-protein diets. Let-

ters indicate significant differences (p< 0.05) among diet treatments, as determined by post-

hoc Tukey tests.

(PDF)

S2 Fig. Colonies (A) consumed more on protein-biased diets, while also overconsuming

both (B) carbohydrates and (C) protein when either was provided in overabundance in the

2-D no-choice feeding experiment. Mean values of cumulative diet consumption (harvested–

(hoarded + scattered)) over 12 days (± SE) are presented, with letters indicating significant dif-

ferences (p< 0.05) among diet treatments, as determined by post-hoc Tukey tests.

(PDF)

S3 Fig. Worker survival curves over 12 days for the (A) no-choice and (B) choice 2-D diet

P:C feeding experiments. Within both experiments, worker survivorship was lower when

workers were confined to protein-biased diets. However, worker survivorship was significantly

higher when workers could select their own intake target in the choice experiment relative to

the no-choice experiment.

(PDF)

S4 Fig. Stacked bar graph comparing how fractions of harvested diet (masses (mg) of con-

sumed, hoarded, scattered) differed across colonies confined to different P:C:L diets over

14 days. White letters in black bars indicate significant consumed diet Tukey-test groupings

based on significant GLM analysis, and black letters above bars indicate significant harvested
diet Tukey-test groupings based on GLM analysis.

(PDF)

S1 Table. Diet recipes for 2-D feeding experiment. We devised a modified version of the

nutritionally defined protein:carbohydrate (P:C) diet of [31] with a 100 g/L protein plus carbo-

hydrate dilution. For preparation details, see Methods and S1 Appendix. Values in parentheses

indicate the amount of protein provided by the ingredient as specified on ingredient labels.

Small amounts of carbohydrates provided by egg powder (2.00%) and calcium caseinate

(1.89%) were also incorporated into diet recipes. All amounts are provided in grams (g), with

30 g protein + carbohydrates prepared in 300 ml of demineralized H2O.

(PDF)

S2 Table. Diet recipes for 3-D feeding experiment. We prepared diets using modified ver-

sions of a protein:carbohydrate:lipid (P:C:L) diet used by [23]. For preparation details, see

Methods and S1 Appendix. All diets standardized so they provided ca. 675 joules from the

combined amounts of protein, carbohydrates, and lipids they provided, while manipulating

the relative joules provided by each macronutrient, assuming that lipids contain twice the

amount of energy as carbohydrates and proteins. Recipes were constructed from ingredient

labels, assuming whey protein had 6.7% fat and 80% protein, calcium caseinate had 1.2% fat

and 93.5% protein and egg white protein had 96% protein per unit dry mass. All amounts are

provided in grams (g), with 30 g protein + carbohydrates prepared in 300 ml of demineralized

H2O. Sucrose was used as the carbohydrate source, and dried egg white powder, whey protein

and calcium caseinate were used as the protein source in approximately 1:1:1 ratio and lipids

were provided by a ca. 4:1:1:1:1 ratio of lard:fish-oil:sunflower-oil:rapeseed-oil:peanut-oil.

Lard was melted, mixed with the other oils, and then combined with 2 ml of chloroform. This

mixture was combined with the dry ingredients and the chloroform was allowed to evaporate
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under a fume hood at room temperature for 96 hr (as per [23]).

(PDF)

S3 Table. Statistical output from general linear model (GLM) analyses testing how the rela-

tive dietary content of protein, carbohydrates, and their interaction affect four foraging

response variables. Significant analyses followed up with post-hoc Tukey tests, displayed in S4

Fig.

(PDF)

S1 Appendix. Detailed information on: 1) the experimental setup, 2) diet preparation, 3)

the 2-D nutritional geometry feeding experiment, and 4) the 3-D nutritional geometry

experiment.

(PDF)
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