12,972 research outputs found

    The structure of atomic nitrogen adsorbed on Fe(100)

    Get PDF
    Nitrogen atoms adsorbed on a Fe(100) surface cause the formation of an ordered c(2 × 2) overlayer with coverage 0.5. A structure analysis was performed by comparing experimental LEED I–V spectra with the results of multiple scattering model calculations. The N atoms were found to occupy fourfold hollow sites, with their plane 0.27 Å above the plane of the surface Fe atoms. In addition, nitrogen adsorption causes an expansion of the two topmost Fe layers by 10% (= 0.14 Å). The minimum r-factor for this structure analysis is about 0.2 for a total of 16 beams. The resulting atomic arrangement is similar to that in the (002) plane of bulk Fe4N, thus supporting the view of a “surface nitride” and providing a consistent picture of the structural and bonding properties of this surface phase

    Characteristic Length Scale of Electric Transport Properties of Genomes

    Full text link
    A tight-binding model together with a novel statistical method are used to investigate the relation between the sequence-dependent electric transport properties and the sequences of protein-coding regions of complete genomes. A correlation parameter Ω\Omega is defined to analyze the relation. For some particular propagation length wmaxw_{max}, the transport behaviors of the coding and non-coding sequences are very different and the correlation reaches its maximal value Ωmax\Omega_{max}. wmaxw_{max} and \omax are characteristic values for each species. The possible reason of the difference between the features of transport properties in the coding and non-coding regions is the mechanism of DNA damage repair processes together with the natural selection.Comment: 4 pages, 4 figure

    Digging Deeper for New Physics in the LHC Data

    Full text link
    In this paper we describe a novel, model-independent technique of "rectangular aggregations" for mining the LHC data for hints of new physics. A typical (CMS) search now has hundreds of signal regions, which can obscure potentially interesting anomalies. Applying our technique to the two CMS jets+MET SUSY searches, we identify a set of previously overlooked 3σ\sim 3\sigma excesses. Among these, four excesses survive tests of inter- and intra-search compatibility, and two are especially interesting: they are largely overlapping between the jets+MET searches and are characterized by low jet multiplicity, zero bb-jets, and low MET and HTH_T. We find that resonant color-triplet production decaying to a quark plus an invisible particle provides an excellent fit to these two excesses and all other data -- including the ATLAS jets+MET search, which actually sees a correlated excess. We discuss the additional constraints coming from dijet resonance searches, monojet searches and pair production. Based on these results, we believe the wide-spread view that the LHC data contains no interesting excesses is greatly exaggerated.Comment: 31 pages + appendices, 14 figures, source code for recasted searches attached as auxiliary materia

    An Update on the LHC Monojet Excess

    Full text link
    In previous work, we identified an anomalous number of events in the LHC jets+MET searches characterized by low jet multiplicity and low-to-moderate transverse energy variables. Here, we update this analysis with results from a new ATLAS search in the monojet channel which also shows a consistent excess. As before, we find that this "monojet excess" is well-described by the resonant production of a heavy colored state decaying to a quark and a massive invisible particle. In the combined ATLAS and CMS data, we now find a local (global) preference of 3.3σ\sigma (2.5σ\sigma) for the new physics model over the Standard Model-only hypothesis. As the signal regions containing the excess are systematics-limited, we consider additional cuts to enhance the signal-to-background ratio. We show that binning finer in HTH_T and requiring the jets to be more central can increase S/BS/B by a factor of 1.5{\sim} 1.5.Comment: 5 pages, 5 figures, source for analysis code used in this paper in attached Ancillary file

    Cornering Natural SUSY at LHC Run II and Beyond

    Full text link
    We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with 15\sim 15 fb1^{-1} of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with RR-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low (<100<100 TeV). We conclude by considering the prospects for the high-luminosity LHC era, where we expect the current limits on particle masses to improve by up to 1\sim 1 TeV, and discuss further model-building directions for natural SUSY that are motivated by this work.Comment: v2: added tree level- parton shower matching, fixed bug in Delphes, main results unchanged. 24 pages, 7 figures, plus appendi

    Thermal analysis of cathode and anode regimes of an MPD arc Summary report, Jun. 1965 - Jan. 1967

    Get PDF
    Thermal analysis of anode and cathode heat transfer in magnetohydrodynamic electric arc
    corecore