211 research outputs found

    Quantum State Tomography of Complex Multimode Fields using Array Detectors

    Get PDF
    We demonstrate that it is possible to use the balanced homodyning with array detectors to measure the quantum state of correlated two-mode signal field. We show the applicability of the method to fields with complex mode functions, thus generalizing the work of Beck (Phys. Rev. Letts. 84, 5748 (2000)) in several important ways. We further establish that, under suitable conditions, array detector measurements from one of the two outputs is sufficient to determine the quantum state of signals. We show the power of the method by reconstructing a truncated Perelomov state which exhibits complicated structure in the joint probability density for the quadratures.Comment: 14 pages text and 3 figures. To be submitted to PR

    NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    Get PDF
    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel

    Participatory Design for the Social Media Needs of Emergency Public Information Officers

    Get PDF
    ABSTRACT This paper describes the design, execution, and results of a participatory design workshop with emergency public information officers (PIOs). During the workshop, PIOs and researchers explored ideas and designs for supporting the social media needs of PIO work. Results indicate that PIO perceptions of social media have changed as they have learned to incorporate activities of the public into their work, yet they still struggle with issues of trust and liability. Based on workshop design activities, the paper offers a set of design recommendations for supporting the social media needs of PIO work practice such as the ability to monitor, document, and report social media activity

    Role of Gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU

    Get PDF
    Patients in intensive care units (ICUs) frequently have multiple infections or persistent fever despite management. The aim of this study was to evaluate the diagnostic contribution of gallium-67 scintigraphy in ICU patients with suspected occult sepsis. One hundred and seventeen patients (> 18 years) who had undergone gallium-67 scintigraphy in the ICU of our medical center over a 3-year period were retrospectively reviewed and analyzed. Patients were categorized into Group 1 (n = 84), those with a known infectious source, but who still had persistent fever or sepsis despite antibiotic treatment or abscess drainage; or Group 2 (n = 33), those without an evident infectious source after clinical, physical, and imaging studies. Among the 117 patients, 19 (16.2%) had a new diagnosis. In Group 1, 12 patients (14%) had a new infection, including pneumonia (4 patients), bed sore infection (2 patients), pulmonary tuberculosis (2 patients), leg cellulitis (1 patient), psoas muscle abscess (1 patient), osteomyelitis (1 patient), and infective endocarditis (1 patient). In Group 2, seven patients (21.2%) had a new infectious source, including septic arthritis (3 patients), osteomyelitis (2 patients), neck abscess (1 patient), and cholecystitis (1 patient). Significant differences were not observed between patients with positive and negative findings on gallium-67 scintigraphy in characteristics, underlying diseases, laboratory data, and outcomes. Gallium-67 scintigraphy helped to detect new or additional infectious sites, particularly bone, joint, and soft tissues. However, differences in hospital stay and mortality were not observed between patients with positive and negative findings

    Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics

    Full text link
    Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the resistively shunted junction (RSJ) model and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of current implemented through the fluctuating twist boundary condition (FTBC). Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases. This implies that the local current conservation, on which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation, without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are compared for the two models some qualitative differences are found at higher frequencies. The critical current is also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate boundary condition than the conventional uniform current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio

    Imaging Spectroscopy of a White-Light Solar Flare

    Get PDF
    We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning \pm172m{\AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and \Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic

    Complementarity, quantum erasure and delayed choice with modified Mach-Zehnder interferometers

    Full text link
    Often cited dictums in Quantum Mechanics include "observation disturbance causes loss of interference" and "ignorance is interference". In this paper we propose and describe a series of experiments with modified Mach-Zehnder interferometers showing that one has to be careful when applying such dictums. We are able to show that without interacting in any way with the light quantum (or quanta) expected to behave "wave-like", interference fringes can be lost by simply gaining (or having the potential to gain) the which-path knowledge. Erasing this information may revive the interference fringes. Delayed choice can be added, arriving to an experiment in line with Wheeler's original proposal. We also show that ignorance is not always synonym with having the interference fringes. The often-invoked "collapse of the wavefunction" is found to be a non-necessary ingredient to describe our experiments.Comment: 8 pages, 3 figures; to appear in EPJ

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure
    • …
    corecore