10,597 research outputs found
Characteristic Length Scale of Electric Transport Properties of Genomes
A tight-binding model together with a novel statistical method are used to
investigate the relation between the sequence-dependent electric transport
properties and the sequences of protein-coding regions of complete genomes. A
correlation parameter is defined to analyze the relation. For some
particular propagation length , the transport behaviors of the coding
and non-coding sequences are very different and the correlation reaches its
maximal value . and \omax are characteristic values for
each species. The possible reason of the difference between the features of
transport properties in the coding and non-coding regions is the mechanism of
DNA damage repair processes together with the natural selection.Comment: 4 pages, 4 figure
The Unpredictability of the Most Energetic Solar Events
Observations over the past two solar cycles show a highly irregular pattern
of occurrence for major solar flares, gamma-ray events, and solar energetic
particle (SEP) fluences. Such phenomena do not appear to follow the direct
indices of solar magnetic activity, such as the sunspot number. I show that
this results from the non-Poisson occurrence for the most energetic events.
This Letter also points out a particularly striking example of this
irregularity in a comparison between the declining phases of the recent two
solar cycles (1993-1995 and 2004-2006, respectively) and traces it through the
radiated energies of the flares, the associated SEP fluences, and the sunspot
areas. These factors suggest that processes in the solar interior involved with
the supply of magnetic flux up to the surface of the Sun have strong
correlations in space and time, leading to a complex occurrence pattern that is
presently unpredictable on timescales longer than active region lifetimes
(weeks) and not correlated well with the solar cycle itself.Comment: 4 page
Observation of simultaneous fast and slow light
We present a microresonator-based system capable of simultaneously producing
time-advanced and time-delayed pulses. The effect is based on the combination
of a sharp spectral feature with two orthogonally-polarized propagating
waveguide modes. We include an experimental proof-of-concept implementation
using a silica microsphere coupled to a tapered optical fiber and use a
time-domain picture to interpret the observed delays. We also discuss potential
applications for future all-optical networks.Comment: 6 pages, 5 figure
Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations
We show analytically that the inverse kinetic inductance of an
overdamped junction array at low frequencies is proportional to the admittance
of an inhomogeneous equivalent impedance network. The bond in this
equivalent network has an inverse inductance
, where is the Josephson
coupling energy of the bond, is the ground-state phase
of the grain , and is the usual magnetic phase factor. We use this
theorem to calculate for square arrays as large as .
The calculated is in very good agreement with the low-temperature
limit of the helicity modulus calculated by conventional equilibrium
Monte Carlo techniques. However, the finite temperature structure of ,
as a function of magnetic field, is \underline{sharper} than the
zero-temperature , which shows surprisingly weak structure. In
triangular arrays, the equilibrium calculation of yields a series of
peaks at frustrations , where is an integer , consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe
Global Energetics of Thirty-Eight Large Solar Eruptive Events
We have evaluated the energetics of 38 solar eruptive events observed by a
variety of spacecraft instruments between February 2002 and December 2006, as
accurately as the observations allow. The measured energetic components
include: (1) the radiated energy in the GOES 1 - 8 A band; (2) the total energy
radiated from the soft X-ray (SXR) emitting plasma; (3) the peak energy in the
SXR-emitting plasma; (4) the bolometric radiated energy over the full duration
of the event; (5) the energy in flare-accelerated electrons above 20 keV and in
flare-accelerated ions above 1 MeV; (6) the kinetic and potential energies of
the coronal mass ejection (CME); (7) the energy in solar energetic particles
(SEPs) observed in interplanetary space; and (8) the amount of free
(nonpotential) magnetic energy estimated to be available in the pertinent
active region. Major conclusions include: (1) the energy radiated by the
SXR-emitting plasma exceeds, by about half an order of magnitude, the peak
energy content of the thermal plasma that produces this radiation; (2) the
energy content in flare-accelerated electrons and ions is sufficient to supply
the bolometric energy radiated across all wavelengths throughout the event; (3)
the energy contents of flare-accelerated electrons and ions are comparable; (4)
the energy in SEPs is typically a few percent of the CME kinetic energy
(measured in the rest frame of the solar wind); and (5) the available magnetic
energy is sufficient to power the CME, the flare-accelerated particles, and the
hot thermal plasma
d-Wave Pairing Correlation in the Two-Dimensional t-J Model
The pair-pair correlation function of the two-dimensional t-J model is
studied by using the power-Lanczos method and an assumption of monotonic
behavior. In comparison with the results of the ideal Fermi gas, we conclude
that the 2D t-J model does not have long range d-wave superconducting
correlation in the interesting parameter range of . Implications
of this result will also be discussed.Comment: 4 pages, 6 figures, accepted by PR
Two-photon interference with thermal light
The study of entangled states has greatly improved the basic understanding
about two-photon interferometry. Two-photon interference is not the
interference of two photons but the result of superposition among
indistinguishable two-photon amplitudes. The concept of two-photon amplitude,
however, has generally been restricted to the case of entangled photons. In
this letter we report an experimental study that may extend this concept to the
general case of independent photons. The experiment also shows interesting
practical applications regarding the possibility of obtaining high resolution
interference patterns with thermal sources.Comment: Added reference 1
Measurement of the Dynamical Structure Factor of a 1D Interacting Fermi Gas
We present measurements of the dynamical structure factor of an
interacting one-dimensional (1D) Fermi gas for small excitation energies. We
use the two lowest hyperfine levels of the Li atom to form a
pseudo-spin-1/2 system whose s-wave interactions are tunable via a Feshbach
resonance. The atoms are confined to 1D by a two-dimensional optical lattice.
Bragg spectroscopy is used to measure a response of the gas to density
("charge") mode excitations at a momentum and frequency . The
spectrum is obtained by varying , while the angle between two laser
beams determines , which is fixed to be less than the Fermi momentum
. The measurements agree well with Tomonaga-Luttinger theory
R-symmetry and Supersymmetry Breaking at Finite Temperature
We analyze the spontaneous symmetry breaking at finite temperature
for the simple O'Raifeartaigh-type model introduced in [1] in connection with
spontaneous supersymmetry breaking. We calculate the finite temperature
effective potential (free energy) to one loop order and study the thermal
evolution of the model. We find that the R-symmetry breaking occurs through a
second order phase transition. Its associated meta-stable supersymmetry
breaking vacuum is thermodynamically favored at high temperatures and the model
remains trapped in this state by a potential barrier, as the temperature lowers
all the way until T=0.Comment: 19 pages, 4 figures - Minor revisions, references added. To appear in
JHE
- …