135 research outputs found

    Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates

    Get PDF
    The Pax6 gene plays a developmental role in various metazoans as the master regulatory gene for eye patterning. Pax6 is also spatially regulated in particular regions of the neural tube. Because the amphioxus has no neuromeres, an understanding of Pax6 expression in the agnathans is crucial for an insight into the origin of neuromerism in the vertebrates. We have isolated a single cognate cDNA of the Pax6 gene, LjPax6, from a Lampetra japonica cDNA library and observed the pattern of its expression using in situ hybridization. Phylogenetic analysis revealed that LjPax6 occurs as an sister group of gnathostome Pax6. In lamprey embryos, LjPax6 is expressed in the eye, the nasohypophysial plate, the oral ectoderm and the brain. In the central nervous system, LjPax6 is expressed in clearly delineated domains in the hindbrain, midbrain and forebrain. We compared the pattern of LjPax6 expression with that of other brain-specific regulatory genes, including LjOtxA, LjPax2/5/8, LjDlx1/6, LjEmx and LjTTF1. Most of the gene expression domains showed conserved pattern, which reflects the situation in the gnathostomes, conforming partly to the neuromeric patterns proposed for the gnathostomes. We conclude that most of the segmented domains of the vertebrate brain were already established in the ancestor common to all vertebrates. Major evolutionary changes in the vertebrate brain may have involved local restriction of cell lineages, leading to the establishment of neuromeres.</p

    Evolution of Otx paralogue usages in early patterning of the vertebrate head

    Get PDF
    AbstractTo assess evolutional changes in the expression pattern of Otx paralogues, expression analyses were undertaken in fugu, bichir, skate and lamprey. Together with those in model vertebrates, the comparison suggested that a gnathostome ancestor would have utilized all of Otx1, Otx2 and Otx5 paralogues in organizer and anterior mesendoderm for head development. In this animal, Otx1 and Otx2 would have also functioned in specification of the anterior neuroectoderm at presomite stage and subsequent development of forebrain/midbrain at somite stage, while Otx5 expression would have already been specialized in epiphysis and eyes. Otx1 and Otx2 functions in anterior neuroectoderm and brain of the gnathostome ancestor would have been differentially maintained by Otx1 in a basal actinopterygian and by Otx2 in a basal sarcopterygian. Otx5 expression in head organizer and anterior mesendoderm seems to have been lost in the teleost lineage after divergence of bichir, and also from the amniotes after divergence of amphibians as independent events. Otx1 expression was lost from the organizer in the tetrapod lineage. In contrast, in a teleost ancestor prior to whole genome duplication, Otx1 and Otx2 would have both been expressed in the dorsal margin of blastoderm, embryonic shield, anterior mesendoderm, anterior neuroectoderm and forebrain/midbrain, at respective stages of head development. Subsequent whole genome duplication and the following genome changes would have caused different Otx paralogue usages in each teleost lineage. Lampreys also have three Otx paralogues; their sequences are highly diverged from gnathostome cognates, but their expression pattern is well related to those of skate Otx cognates

    Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates

    Get PDF
    AbstractIn jawed vertebrates, the Dlx code, or nested expression patterns of Dlx genes, specify the dorsoventral polarity of pharyngeal arches, downstream of endothelin-1 (Edn-1) and its effectors, Bapx1 (Nkx3.2) and dHand (Hand2). To elucidate the evolution of the specification mechanism of the oropharyngeal skeletal system, lamprey homologs of Dlx, Edn, endothelin receptor (Ednr), Bapx1, and dHand were identified. Our analysis suggested that the Edn gene family emerged at the advent of vertebrates, and that gene duplications leading to the different Edn gnathostome subtypes (Edn1–3) occurred before the cyclostome–gnathostome split. This timing of gene duplications, giving rise to multiple subtypes, was also implied for Dlx, Ednr, Hand, and Bapx. In lamprey embryos, nested expressions of Dlx genes were not observed in pharyngeal arches, nor was any focal expression of Bapx1, known in gnathostomes to specify the jaw joint. The dHand homolog, however, was expressed more intensively ventrally, as in gnathostomes. Lamprey homologs of Edn-1 and EdnrA were also shown to be expressed as described in mice, indicating involvement of this signaling pathway in the craniofacial patterning early in vertebrate evolution. These results suggest that the last common ancestor of all the extant vertebrates would have possessed basic gene repertoires involved in oropharyngeal patterning in gnathostomes, but the elaborate genetic program leading to the Dlx code is likely to have been acquired uniquely in gnathostomes

    Wind Tunnel Testing on Start/Unstart Characteristics of Finite Supersonic Biplane Wing

    Get PDF
    This study describes the start/unstart characteristics of a finite and rectangular supersonic biplane wing. Two wing models were tested in wind tunnels with aspect ratios of 0.75 (model A) and 2.5 (model B). The models were composed of a Busemann biplane section. The tests were carried out using supersonic and transonic wind tunnels over a Mach number range of 0.3≤M∞≤2.3 with angles of attack of 0°, 2°, and 4°. The Schlieren system was used to observe the flow characteristics around the models. The experimental results showed that these models had start/unstart characteristics that differed from those of the Busemann biplane (two dimensional) owing to three-dimensional effects. Models A and B started at lower Mach numbers than the Busemann biplane. The characteristics also varied with aspect ratio: model A (1.3<M∞<1.5) started at a lower Mach number than model B (1.6<M∞<1.8) owing to the lower aspect ratio. Model B was located in the double solution domain for the start/unstart characteristics at M∞=1.7, and model B was in either the start or unstart state at M∞=1.7. Once the state was determined, either state was stable

    Impact of the Patency of Inferior Mesenteric Artery on 7-Year Outcomes After Endovascular Aneurysm Repair

    Full text link
    Purpose: The impact of preoperative patent inferior mesenteric artery (IMA) on late outcomes following endovascular aneurysm repair (EVAR) remains unclear. This study aimed to investigate the specific influence of IMA patency on 7-year outcomes after EVAR. Materials and Methods: In this retrospective cohort study, 556 EVARs performed for true abdominal aortic aneurysm cases between January 2006 and December 2019 at our institution were reviewed. Endovascular aneurysm repairs performed using a commercially available device with no type I or type III endoleak (EL) during follow-up and with follow-up ≥12 months were included. A total of 336 patients were enrolled in this study. The cohort was divided into the patent IMA group and the occluded IMA group according to preoperative IMA status. The late outcomes, including aneurysm sac enlargement, reintervention, and mortality rates, were compared between both groups using propensity-score-matched data. Results: After propensity score matching, 86 patients were included in each group. The median follow-up period was 56 months (interquartile range: 32–94 months). The incidence of type II EL at discharge was 50% in the patent IMA group and 19% in the occluded IMA group (p<0.001). The type II EL from IMA and lumbar arteries was significantly higher in the patent IMA group than in the occluded IMA group (p<0.001 and p=0.002). The rate of freedom from aneurysm sac enlargement with type II EL was significantly higher in the occluded IMA group than in the patent IMA group (94% vs 69% at 7 years; p<0.001). The rate of freedom from reintervention was significantly higher in the occluded IMA group than in the patent IMA group (90% vs 74% at 7 years; p=0.007). Abdominal aortic aneurysm–related death and all-cause mortality did not significantly differ between groups (p=0.32 and p=0.34). Conclusions: Inferior mesenteric artery patency could affect late reintervention and aneurysm sac enlargement but did not have a significant impact on mortality. Preoperative assessment and embolization of IMA might be an important factor for improvement in late EVAR outcomes. Clinical Impact: The preoperative patency of the inferior mesenteric artery was significantly associated with a higher incidence of sac enlargement and reintervention with type II endoleak following endovascular aneurysm repair, even after adjustment for patient background. Preoperative assessment and embolization of inferior mesenteric artery might be an important factor for improvement in late EVAR outcomes.Ide T, Shimamura K, Kuratani T, et al. Impact of the Patency of Inferior Mesenteric Artery on 7-Year Outcomes After Endovascular Aneurysm Repair. Journal of Endovascular Therapy. 2022. Copyright © 2022 The Author(s). doi:10.1177/15266028221121748

    Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum

    Get PDF
    International audienceBackground : Retinoic acid (RA) signaling controls many developmental processes in chordates, from early axis specification to late organogenesis. The functions of RA are chiefly mediated by a subfamily of nuclear hormone receptors, the retinoic acid receptors (RARs), that act as ligand-activated transcription factors. While RARs have been extensively studied in jawed vertebrates (that is, gnathostomes) and invertebrate chordates, very little is known about the repertoire and developmental roles of RARs in cyclostomes, which are extant jawless vertebrates. Here, we present the first extensive study of cyclostome RARs focusing on three different lamprey species: the European freshwater lamprey, Lampetra fluviatilis, the sea lamprey, Petromyzon marinus, and the Japanese lamprey, Lethenteron japonicum.Results : We identified four rar paralogs (rar1, rar2, rar3, and rar4) in each of the three lamprey species, and phylogenetic analyses indicate a complex evolutionary history of lamprey rar genes including the origin of rar1 and rar4 by lineage-specific duplication after the lamprey-hagfish split. We further assessed their expression patterns during embryonic development by in situ hybridization. The results show that lamprey rar genes are generally characterized by dynamic and highly specific expression domains in different embryonic tissues. In particular, lamprey rar genes exhibit combinatorial expression domains in the anterior central nervous system (CNS) and the pharyngeal region.Conclusions : Our results indicate that the genome of lampreys encodes at least four rar genes and suggest that the lamprey rar complement arose from vertebrate-specific whole genome duplications followed by a lamprey-specific duplication event. Moreover, we describe a combinatorial code of lamprey rar expression in both anterior CNS and pharynx resulting from dynamic and highly specific expression patterns during embryonic development. This ‘RAR code’ might function in regionalization and patterning of these two tissues by differentially modulating the expression of downstream effector genes during development

    Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids

    Get PDF
    International audienceThe amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that lower-to-upper jaw transformation induced by inactivation of the Endothelin1-Dlx5/6 cascade involving Goosecoid results in loss of the tympanic membrane in mouse, but causes duplication of the tympanic membrane in chicken. Detailed anatomical analysis indicates that the relative positions of the primary jaw joint and first pharyngeal pouch led to the coupling of tympanic membrane formation with the lower jaw in mammals, but with the upper jaw in diapsids. We propose that differences in connection and release by various pharyngeal skeletal elements resulted in structural diversity, leading to the acquisition of the tympanic membrane in two distinct manners during amniote evolution

    The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan

    Get PDF
    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell

    Genome-Wide Detection of Gene Extinction in Early Mammalian Evolution

    Get PDF
    Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor (“PRLHR”) gene families. Our findings highlight the potential of genome-wide gene phylogeny (“phylome”) analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution
    corecore