67 research outputs found

    A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details

    Get PDF
    IgG4-related disease (IgG4RD) is a novel clinical disease entity characterized by elevated serum IgG4 concentration and tumefaction or tissue infiltration by IgG4-positive plasma cells. IgG4RD may be present in a certain proportion of patients with a wide variety of diseases, including Mikulicz’s disease, autoimmune pancreatitis, hypophysitis, Riedel thyroiditis, interstitial pneumonitis, interstitial nephritis, prostatitis, lymphadenopathy, retroperitoneal fibrosis, inflammatory aortic aneurysm, and inflammatory pseudotumor. Although IgG4RD forms a distinct, clinically independent disease category and is attracting strong attention as a new clinical entity, many questions and problems still remain to be elucidated, including its pathogenesis, the establishment of diagnostic criteria, and the role of IgG4. Here we describe the concept of IgG4RD and up-to-date information on this emerging disease entity

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in the heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km. Three clusters of DECIGO will be placed far from each other, and the fourth cluster will be placed in the same position as one of the three clusters to obtain the correlation signals for the detection of the primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand the multi-messenger astronomy.Comment: 10 pages, 3 figure

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month

    Current status of space gravitational wave antenna DECIGO and B-DECIGO

    Get PDF
    The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could have been produced during the inflationary period right after the birth of the Universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the Universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry–Pérot Michelson interferometers with an arm length of 1000 km. Three DECIGO clusters will be placed far from each other, and the fourth will be placed in the same position as one of the other three to obtain correlation signals for the detection of primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder for DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand multi-messenger astronomy

    DECIGO and DECIGO pathfinder

    Full text link

    Successful Treatment of an Infant with Left Ventricular Noncompaction Presenting with Fatal Ventricular Arrhythmia Treated with Cardiac Resynchronization Therapy and an Implantable Cardioverter Defibrillator

    No full text
    We herein report the successful treatment of a 4-year-old girl with left ventricular noncompaction (LVNC) who presented with incessant ventricular fibrillation at 5 months of age. An implantable cardioverter defibrillator (ICD) was implanted, and dual chamber (DDD) pacing was initiated at 7 months of age. At her 10-month follow-up, her left ventricular ejection fraction (LVEF) had decreased from 45% to 20% with mechanical dyssynchrony. After upgrading to cardiac resynchronization therapy (CRT), the LVEF improved to 50%. The usefulness of CRT in pediatric LVNC has not been fully elucidated. However, our case suggests that CRT therapy may be an effective option for LVNC-induced cardiac dysfunction

    DYNAMIC STABILITY OF AN INITIALLY DEFLECTED RECTANGULAR PLATE UNDER AN INPLANE DYNAMIC MOMENT

    Get PDF
    "In the following paper, the vibration of an initially deflected rectangular plate under a sinusoidally time-varying inplane moment is examined from the point of view of dynamic instability. The equation of motion describing the large deflection of the initially deflected plate is analyzed by the Galerkin method. The resulting equations for time variables are integrated by using the Runge-Kutta-Gill method. The dynamic instability regiohs are analyzed by the small deflection theory of a thin plate,neglecting nonlinear terms. The amplitudes of unstable regions are determined by large deflection theory.Numerical results are presented for various shapes and magnitudes of the initial deflection. The effect of the initial deflection on natural frequency, dynamic instability and amplitudes are discussed
    corecore