90 research outputs found

    Chemical labelling for visualizing native AMPA receptors in live neurons

    Get PDF
    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders

    Mutation associated with an autosomal dominant cone-rod dystrophy CORD7 modifies RIM1-mediated modulation of voltage-dependent Ca2+ channels.

    Get PDF
    International audienceGenetic analyses have revealed an association between the gene encoding the Rab3A-interacting molecule (RIM1) and the autosomal dominant cone-rod dystrophy CORD7. However, the pathogenesis of CORD7 remains unclear. We recently revealed that RIM1 regulates voltage-dependent Ca(2+) channel (VDCC) currents and anchors neurotransmitter-containing vesicles to VDCCs, thereby controlling neurotransmitter release. We demonstrate here that the mouse RIM1 arginine-to-histidine substitution (R655H), which corresponds to the human CORD7 mutation, modifies RIM1 function in regulating VDCC currents elicited by the P/Q-type Ca(v)2.1 and L-type Ca(v)1.4 channels. Thus, our data can raise an interesting possibility that CORD7 phenotypes including retinal deficits and enhanced cognition are at least partly due to altered regulation of presynaptic VDCC currents

    RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels.

    Get PDF
    International audienceThe molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in mammalian neurons. RIM1 associated with VDCC beta-subunits via its C terminus to markedly suppress voltage-dependent inactivation among different neuronal VDCCs. Consistently, in pheochromocytoma neuroendocrine PC12 cells, acetylcholine release was significantly potentiated by the full-length and C-terminal RIM1 constructs, but membrane docking of vesicles was enhanced only by the full-length RIM1. The beta construct beta-AID dominant negative, which disrupts the RIM1-beta association, accelerated the inactivation of native VDCC currents, suppressed vesicle docking and acetylcholine release in PC12 cells, and inhibited glutamate release in cultured cerebellar neurons. Thus, RIM1 association with beta in the presynaptic active zone supports release via two distinct mechanisms: sustaining Ca2+ influx through inhibition of channel inactivation, and anchoring neurotransmitter-containing vesicles in the vicinity of VDCCs

    Revisiting PFA-mediated tissue fixation chemistry: FixEL enables trapping of small molecules in the brain to visualize their distribution changes

    Get PDF
    ホルマリン漬けから着想した小分子可視化法 --医薬品開発効率化につながる新たな戦略--. 京都大学プレスリリース. 2022-12-05.Various small molecules have been used as functional probes for tissue imaging in medical diagnosis and pharmaceutical drugs for disease treatment. The spatial distribution, target selectivity, and diffusion/excretion kinetics of small molecules in structurally complicated specimens are critical for function. However, robust methods for precisely evaluating these parameters in the brain have been limited. Herein, we report a new method termed “fixation-driven chemical cross-linking of exogenous ligands (FixEL), ” which traps and images exogenously administered molecules of interest (MOIs) in complex tissues. This method relies on protein-MOI interactions and chemical cross-linking of amine-tethered MOI with paraformaldehyde used for perfusion fixation. FixEL is used to obtain images of the distribution of the small molecules, which addresses selective/nonselective binding to proteins, time-dependent localization changes, and diffusion/retention kinetics of MOIs such as the scaffold of PET tracer derivatives or drug-like small molecules

    A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca2+ entry via association with TRPC3 and TRPC7.

    Get PDF
    Mutations in PKD2 gene result in autosomal dominant polycystic kidney disease (ADPKD). PKD2 encodes polycystin-2 (TRPP2), which is a homologue of transient receptor potential (TRP) cation channel proteins. Here we identify a novel PKD2 mutation that generates a C-terminal tail-truncated TRPP2 mutant 697fsX with a frameshift resulting in an aberrant 17-amino acid addition after glutamic acid residue 697 from a family showing mild ADPKD symptoms. When recombinantly expressed in HEK293 cells, wild-type (WT) TRPP2 localized at the endoplasmic reticulum (ER) membrane significantly enhanced Ca2+ release from the ER upon muscarinic acetylcholine receptor (mAChR) stimulation. In contrast, 697fsX, which showed a predominant plasma membrane localization characteristic of TRPP2 mutants with C terminus deletion, prominently increased mAChR-activated influx in cells expressing TRPC3 or TRPC7. Coimmunoprecipitation, pulldown assay, and cross-linking experiments revealed a physical association between 697fsX and TRPC3 or TRPC7. 697fsX but not WT TRPP2 elicited a depolarizing shift of reversal potentials and an enhancement of single-channel conductance indicative of altered ion-permeating pore properties of mAChR-activated currents. Importantly, in kidney epithelial LLC-PK1 cells the recombinant 679fsX construct was codistributed with native TRPC3 proteins at the apical membrane area, but the WT construct was distributed in the basolateral membrane and adjacent intracellular areas. Our results suggest that heteromeric cation channels comprised of the TRPP2 mutant and the TRPC3 or TRPC7 protein induce enhanced receptor-activated Ca2+ influx that may lead to dysregulated cell growth in ADPKD. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.Publisher\u27s version/PDF may be used after 12 months embarg

    Fluorescent sensors reveal subcellular thermal changes.

    Get PDF
    In mammals and birds, thermoregulation to conserve body temperature is vital to life. Multiple mechanisms of thermogeneration have been proposed, localized in different subcellular organelles. However, studying thermogenesis directly in intact organelles has been challenging. Visualizing patterns of thermal changes at subcellular resolution would reveal physiologically relevant spatio-temporal information, especially if this could be done in the native cellular configuration of the cell. Here we review and compare the wide variety of intracellular thermosensors currently identified. This review focuses particularly on genetically encoded sensors. It also explores the notable physiological discoveries made using these imaging methods, which are rapidly becoming indispensible to the study of thermal biology

    An efficient and rational method for selecting allosteric modulators to GABAA receptors using ligand-directed chemistry

    No full text
    Allosteric modulators have drawn intense attention because of their high specificity and low toxicity relative to traditional compounds which bind to the orthosteric site of a target protein. However, it is hard to discover such allosteric modulators acting on membrane-proteins, important drug targets. As a result, development of these modulators has been stagnant in recent years. For example, benzodiazepines, allosteric modulators acting on GABAA receptors, are widely and clinically utilized as anxiolytic and sleep-inducing agents in spite of their drug resistance and addiction. Here, we developed a new method termed BFQRAP (Bimolecular Fluorescence Quenching and Recovery with Assistance of Positive allosteric modulator) using GABAAR-based semisynthetic fluorescent biosensors constructed by ligand-directed chemistry, which enables to rationally detect and select positive allosteric modulators that is bound to various allosteric sites of GABAAR. This method was applied to the high-throughput screening of a chemical library, leading to the discovery of new positive allosteric modulators functioning on GABAARs.日本化学会 第98春季年会 (2018
    corecore