63 research outputs found

    A Kinesin Family Member 6 Variant Is Associated With Coronary Heart Disease in the Women’s Health Study

    Get PDF
    ObjectivesWe asked if carriers of the 719Arg allele of kinesin family member 6 (KIF6) have increased risk of coronary heart disease (CHD) in a cohort of initially healthy Caucasian American women.BackgroundThe 719Arg allele of KIF6 (rs20455) has been reported to be associated with increased risk of CHD in a large population-based prospective study, ARIC (Atherosclerosis Risk in Communities), and in the placebo arms of 2 statin trials, CARE (Cholesterol and Recurrent Events) and WOSCOPS (West of Scotland Coronary Prevention Study). However, this KIF6 variant was not specifically investigated in the female subgroup in the ARIC study, and the CARE and WOSCOPS trials included only a small number of female patients.MethodsGenotypes of the rs20455 single nucleotide polymorphism (SNP) were determined among 25,283 initially healthy Caucasian women, age 45 years and older, participating in the WHS (Women’s Health Study) who were prospectively followed over a 12-year period for incident cardiovascular events. The risk associated with the 719Arg allele of KIF6 was estimated using Cox proportional hazards models that adjusted for age and traditional risk factors.ResultsDuring follow-up, 953 women suffered a first-ever CHD event (myocardial infarction, coronary revascularization, or cardiovascular death) or first-ever ischemic stroke. Compared with noncarriers, carriers of the 719Arg allele had an increased risk of CHD (hazard ratio [HR] = 1.24 [95% confidence interval (CI) 1.04 to 1.46, p = 0.013]) and myocardial infarction (HR = 1.34 [95% CI 1.02 to 1.75, p = 0.034]) but not ischemic stroke.ConclusionsConfirming and extending previous reports, carriers of the 719Arg allele of KIF6 have 34% higher risk of myocardial infarction and 24% higher risk of CHD compared with noncarriers among 25,283 women from the WHS

    Analysis of 17,576 Potentially Functional SNPs in Three Case–Control Studies of Myocardial Infarction

    Get PDF
    Myocardial infarction (MI) is a common complex disease with a genetic component. While several single nucleotide polymorphisms (SNPs) have been reported to be associated with risk of MI, they do not fully explain the observed genetic component of MI. We have been investigating the association between MI and SNPs that are located in genes and have the potential to affect gene function or expression. We have previously published studies that tested about 12,000 SNPs for association with risk of MI, early-onset MI, or coronary stenosis. In the current study we tested 17,576 SNPs that could affect gene function or expression. In order to use genotyping resources efficiently, we staged the testing of these SNPs in three case–control studies of MI. In the first study (762 cases, 857 controls) we tested 17,576 SNPs and found 1,949 SNPs that were associated with MI (P<0.05). We tested these 1,949 SNPs in a second study (579 cases and 1159 controls) and found that 24 SNPs were associated with MI (1-sided P<0.05) and had the same risk alleles in the first and second study. Finally, we tested these 24 SNPs in a third study (475 cases and 619 controls) and found that 5 SNPs in 4 genes (ENO1, FXN (2 SNPs), HLA-DPB2, and LPA) were associated with MI in the third study (1-sided P<0.05), and had the same risk alleles in all three studies. The false discovery rate for this group of 5 SNPs was 0.23. Thus, we have identified 5 SNPs that merit further examination for their potential association with MI. One of these SNPs (in LPA), has been previously shown to be associated with risk of cardiovascular disease in other studies

    The contribution of a 9p21.3 variant, a KIF6 variant, and C-reactive protein to predicting risk of myocardial infarction in a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic risk factors might improve prediction of coronary events. Several variants at chromosome 9p21.3 have been widely reported to be associated with coronary heart disease (CHD) in prospective and case-control studies. A variant of <it>KIF6 </it>(719Arg) has also been reported to be associated with increased risk of CHD in large prospective studies, but not in case-control studies. We asked whether the addition of genetic information (the 9p21.3 or <it>KIF6 </it>variants) or a well-established non-genetic risk factor (C-reactive protein [CRP]) can improve risk prediction by the Framingham Risk Score (FRS) in the Cardiovascular Health Study (CHS)--a prospective observational study of risk factors for cardiovascular disease among > 5,000 participants aged 65 or older.</p> <p>Methods</p> <p>Improvement of risk prediction was assessed by change in the area under the receiver-operator characteristic curve (AUC) and by net reclassification improvement (NRI).</p> <p>Results</p> <p>Among white participants the FRS was improved by addition of <it>KIF6 </it>719Arg carrier status among men as assessed by the AUC (from 0.581 to 0.596, P = 0.03) but not by NRI (NRI = 0.027, P = 0.32). Adding both CRP and 719Arg carrier status to the FRS improved risk prediction by the AUC (0.608, P = 0.02) and NRI (0.093, P = 0.008) in men, but not women (P ≥ 0.24).</p> <p>Conclusions</p> <p>While none of these risk markers individually or in combination improved risk prediction among women, a combination of <it>KIF6 </it>719Arg carrier status and CRP levels modestly improved risk prediction among white men; although this improvement is not significant after multiple-testing correction. These observations should be investigated in other prospective studies.</p

    Genome-Wide Study of Gene Variants Associated with Differential Cardiovascular Event Reduction by Pravastatin Therapy

    Get PDF
    Statin therapy reduces the risk of coronary heart disease (CHD), however, the person-to-person variability in response to statin therapy is not well understood. We have investigated the effect of genetic variation on the reduction of CHD events by pravastatin. First, we conducted a genome-wide association study of 682 CHD cases from the Cholesterol and Recurrent Events (CARE) trial and 383 CHD cases from the West of Scotland Coronary Prevention Study (WOSCOPS), two randomized, placebo-controlled studies of pravastatin. In a combined case-only analysis, 79 single nucleotide polymorphisms (SNPs) were associated with differential CHD event reduction by pravastatin according to genotype (P<0.0001), and these SNPs were analyzed in a second stage that included cases as well as non-cases from CARE and WOSCOPS and patients from the PROspective Study of Pravastatin in the Elderly at Risk/PHArmacogenomic study of Statins in the Elderly at risk for cardiovascular disease (PROSPER/PHASE), a randomized placebo controlled study of pravastatin in the elderly. We found that one of these SNPs (rs13279522) was associated with differential CHD event reduction by pravastatin therapy in all 3 studies: P = 0.002 in CARE, P = 0.01 in WOSCOPS, P = 0.002 in PROSPER/PHASE. In a combined analysis of CARE, WOSCOPS, and PROSPER/PHASE, the hazard ratio for CHD when comparing pravastatin with placebo decreased by a factor of 0.63 (95% CI: 0.52 to 0.75) for each extra copy of the minor allele (P = 4.8×10−7). This SNP is located in DnaJ homolog subfamily C member 5B (DNAJC5B) and merits investigation in additional randomized studies of pravastatin and other statins

    Genome-Wide Association Analysis of Soluble ICAM-1 Concentration Reveals Novel Associations at the NFKBIK, PNPLA3, RELA, and SH2B3 Loci

    Get PDF
    Soluble ICAM-1 (sICAM-1) is an endothelium-derived inflammatory marker that has been associated with diverse conditions such as myocardial infarction, diabetes, stroke, and malaria. Despite evidence for a heritable component to sICAM-1 levels, few genetic loci have been identified so far. To comprehensively address this issue, we performed a genome-wide association analysis of sICAM-1 concentration in 22,435 apparently healthy women from the Women's Genome Health Study. While our results confirm the previously reported associations at the ABO and ICAM1 loci, four novel associations were identified in the vicinity of NFKBIK (rs3136642, P = 5.4×10−9), PNPLA3 (rs738409, P = 5.8×10−9), RELA (rs1049728, P = 2.7×10−16), and SH2B3 (rs3184504, P = 2.9×10−17). Two loci, NFKBIB and RELA, are involved in NFKB signaling pathway; PNPLA3 is known for its association with fatty liver disease; and SH3B2 has been associated with a multitude of traits and disease including myocardial infarction. These associations provide insights into the genetic regulation of sICAM-1 levels and implicate these loci in the regulation of endothelial function

    Gene Expression Signature in Peripheral Blood Detects Thoracic Aortic Aneurysm

    Get PDF
    BACKGROUND: Thoracic aortic aneurysm (TAA) is usually asymptomatic and associated with high mortality. Adverse clinical outcome of TAA is preventable by elective surgical repair; however, identifying at-risk individuals is difficult. We hypothesized that gene expression patterns in peripheral blood cells may correlate with TAA disease status. Our goal was to identify a distinct gene expression signature in peripheral blood that may identify individuals at risk for TAA. METHODS AND FINDINGS: Whole genome gene expression profiles from 94 peripheral blood samples (collected from 58 individuals with TAA and 36 controls) were analyzed. Significance Analysis of Microarray (SAM) identified potential signature genes characterizing TAA vs. normal, ascending vs. descending TAA, and sporadic vs. familial TAA. Using a training set containing 36 TAA patients and 25 controls, a 41-gene classification model was constructed for detecting TAA status and an overall accuracy of 78+/-6% was achieved. Testing this classifier on an independent validation set containing 22 TAA samples and 11 controls yielded an overall classification accuracy of 78%. These 41 classifier genes were further validated by TaqMan real-time PCR assays. Classification based on the TaqMan data replicated the microarray results and achieved 80% classification accuracy on the testing set. CONCLUSIONS: This study identified informative gene expression signatures in peripheral blood cells that can characterize TAA status and subtypes of TAA. Moreover, a 41-gene classifier based on expression signature can identify TAA patients with high accuracy. The transcriptional programs in peripheral blood leading to the identification of these markers also provide insights into the mechanism of development of aortic aneurysms and highlight potential targets for therapeutic intervention. The classifier genes identified in this study, and validated by TaqMan real-time PCR, define a set of promising potential diagnostic markers, setting the stage for a blood-based gene expression test to facilitate early detection of TAA

    Metabolic Mediators of the Effects of Family History and Genetic Risk Score on Coronary Heart Disease-Findings from the Malmö Diet and Cancer Study

    No full text
    Background--Family history of coronary heart disease (CHD) as well as genetic predisposition to CHD assessed by a genetic risk score (GRS) are predictors of CHD risk. It is, however, uncertain to what extent these risk predictors are mediated by major metabolic pathways. Methods and Results--Total effects of self-reported family history and a 50-variant GRS (GRS50), as well as effects mediated by apolipoprotein B and A-I (apoB, apoA-I), blood pressure, and diabetes mellitus, on incidence of CHD were estimated in 23 595 participants of the Malmö Diet and Cancer study (a prospective, population-based study). During a median follow-up of 14.4 years, 2213 participants experienced a first CHD event. Family history of CHD and GRS50 (highest versus other quintiles) were associated with incident CHD, with hazard ratios of 1.52 (95% CI: 1.39-1.65) and 1.53 (95% CI: 1.39-1.68), respectively, after adjusting for age, sex, and smoking status. Small proportions of the family history effect were mediated by metabolic risk factors: 8.3% (95% CI: 5.8-11.7%) by the apoB pathway, 1.7% (95% CI: 0.2-3.4%) by apoA-I, 8.5% (95% CI: 5.9-12.0%) by blood pressure, and 1.5% (95% CI: 0.8% to 3.8%) by diabetes mellitus. Similarly, small proportions of GRS50 were mediated: 8.1% (95% CI: 5.5-11.8%) by apoB, 1.2% (95% CI: 0.5-3.0%) by apoA-I, 4.2% (95% CI: 1.3-7.5%) by blood pressure, and 0.9% (95% CI: 3.7% to 1.6%) by diabetes mellitus. Conclusions--A fraction of the CHD risk associated with family history or with GRS50 is mediated through elevated blood lipids and hypertension, but not through diabetes mellitus. However, a major part (≥80%) of the genetic effect operates independently of established metabolic risk factor pathways

    Association of cardiovascular events and lipoprotein particle size : Development of a risk score based on functional data analysis

    No full text
    Background Functional data is data represented by functions (curves or surfaces of a low-dimensional index). Functional data often arise when measurements are collected over time or across locations. In the field of medicine, plasma lipoprotein particles can be quantified according to particle diameter by ion mobility. Goal We wanted to evaluate the utility of functional analysis for assessing the association of plasma lipoprotein size distribution with cardiovascular disease after adjustment for established risk factors including standard lipids. Methods We developed a model to predict risk of cardiovascular disease among participants in a case-cohort study of the Malmö Prevention Project. We used a linear model with 311 coefficients, corresponding to measures of lipoprotein mass at each of 311 diameters, and assumed these coefficients varied smoothly along the diameter index. The smooth function was represented as an expansion of natural cubic splines where the smoothness parameter was chosen by assessment of a series of nested splines. Cox proportional hazards models of time to a first cardiovascular disease event were used to estimate the smooth coefficient function among a training set consisting of one half of the participants. The resulting model was used to calculate a functional risk score for the remaining half of the participants (test set) and its association with events was assessed in Cox models that adjusted for traditional cardiovascular risk factors. Results In the test set, participants with a functional risk score in the highest quartile were found to be at increased risk of cardiovascular events compared with the lowest quartile (Hazard ratio = 1.34; 95% Confidence Interval: 1.05 to 1.70) after adjustment for established risk factors. Conclusion In an independent test set of Malmö Prevention Project participants, the functional risk score was found to be associated with cardiovascular events after adjustment for traditional risk factors including standard lipids
    • …
    corecore