14 research outputs found

    The Tianlai Cylinder Pathfinder array: System functions and basic performance analysis

    Get PDF
    The Tianlai Cylinder Pathfinder is a radio interferometer array designed to test techniques for 21 cm intensity mapping in the post-reionization Universe, with the ultimate aim of mapping the large scale structure and measuring cosmological parameters such as the dark energy equation of state. Each of its three parallel cylinder reflectors is oriented in the north-south direction, and the array has a large field of view. As the Earth rotates, the northern sky is observed by drift scanning. The array is located in Hongliuxia, a radio-quiet site in Xinjiang, and saw its first light in September 2016. In this first data analysis paper for the Tianlai cylinder array, we discuss the sub-system qualification tests, and present basic system performance obtained from preliminary analysis of the commissioning observations during 2016-2018. We show typical interferometric visibility data, from which we derive the actual beam profile in the east-west direction and the frequency band-pass response. We describe also the calibration process to determine the complex gains for the array elements, either using bright astronomical point sources, or an artificial on site calibrator source, and discuss the instrument response stability, crucial for transit interferometry. Based on this analysis, we find a system temperature of about 90 K, and we also estimate the sensitivity of the array

    Experimental Study on the Mechanical Properties and Seepage Characteristics of Red Sandstone with a Single Persistent Joint under Triaxial Compression

    No full text
    In this research, the conventional triaxial compression experiments for intact red sandstone specimens and the specimens with a single persistent joint at different inclination angles, i.e., 0°, 30°, 45°, and 90°, were conducted at first. Based on the results of the conventional tests, the effects of the confining pressure and the joint inclination angle on the mechanical properties including deformation behavior and strength parameters were summarized and analyzed, respectively. We find that the strength and deformation of jointed red sandstone are enlarged due to the increment of confining pressure, and the mechanical parameters of specimens show a U-shaped development with the rise of the joint angle. Besides, to investigate the effects of the pore pressure on seepage characteristics of rocks with joint angles at 0°, 45°, and 90°, a series of triaxial compression drainage tests on the jointed red sandstone were performed. The results show that the pore pressure has a weakening effect on the strength of jointed specimens, which can reduce the strengthening effect induced by confining pressure. Meanwhile, the tested specimens mostly present shear failure modes. As a result, the mechanical responses, seepage characteristics, and cracking modes in red sandstone containing a single persistent joint under triaxial compression are revealed

    High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications

    No full text
    Energy storage systems have aroused public interest because of the blooming development of intermittent renewable energy sources. Vanadium redox flow batteries (VRFBs) are the typical candidates owing to their flexible operation and good cycle durability. However, due to the usage of perfluorinated separator membranes, VRFBs suffer from both high cost and serious vanadium ions cross penetration. Herein, we fabricate a series of low-budget and high-performance blend membranes from polyvinylpyrrolidone (PVP) and cardo-poly(etherketone) (PEKC) for VFRB. A PEKC network gives the membrane excellent mechanical rigidity, while PVP endows the blend membranes with superior sulfonic acid uptake owing to the present N-heterocycle and carbonyl group in PVP, resulting in low area resistance. Meanwhile, blend membranes also display low vanadium ion permeability resulting from the electrostatic repulsion effect of protonated PVP polymer chains towards vanadium ions. Consequently, the 50%PVP-PEKC membrane has a high ionic selectivity of 1.03 × 106 S min cm−3, while that of Nafion 115 is nearly 17 times lower (6.03 × 104 S min cm−3). The VRFB equipped with 50%PVP-PEKC membrane has high coulombic efficiencies (99.3–99.7%), voltage efficiencies (84.6–67.0%) and energy efficiencies (83.9–66.8%) at current densities of 80–180 mA cm−2, and possesses excellent cycle constancy, indicating that low-cost x%PVP-PEKC blend membranes have a great application potentiality for VRFBs

    High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications

    No full text
    Energy storage systems have aroused public interest because of the blooming development of intermittent renewable energy sources. Vanadium redox flow batteries (VRFBs) are the typical candidates owing to their flexible operation and good cycle durability. However, due to the usage of perfluorinated separator membranes, VRFBs suffer from both high cost and serious vanadium ions cross penetration. Herein, we fabricate a series of low-budget and high-performance blend membranes from polyvinylpyrrolidone (PVP) and cardo-poly(etherketone) (PEKC) for VFRB. A PEKC network gives the membrane excellent mechanical rigidity, while PVP endows the blend membranes with superior sulfonic acid uptake owing to the present N-heterocycle and carbonyl group in PVP, resulting in low area resistance. Meanwhile, blend membranes also display low vanadium ion permeability resulting from the electrostatic repulsion effect of protonated PVP polymer chains towards vanadium ions. Consequently, the 50%PVP-PEKC membrane has a high ionic selectivity of 1.03 × 106 S min cm−3, while that of Nafion 115 is nearly 17 times lower (6.03 × 104 S min cm−3). The VRFB equipped with 50%PVP-PEKC membrane has high coulombic efficiencies (99.3–99.7%), voltage efficiencies (84.6–67.0%) and energy efficiencies (83.9–66.8%) at current densities of 80–180 mA cm−2, and possesses excellent cycle constancy, indicating that low-cost x%PVP-PEKC blend membranes have a great application potentiality for VRFBs

    The Tianlai dish pathfinder array: design, operation, and performance of a prototype transit radio interferometer

    No full text
    International audienceThe Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21 cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constant declination. We describe the design, calibration, noise level, and stability of this instrument based on the analysis of about 5% of 6200 h of on-sky observations through 2019 October. Beam pattern determinations using drones and the transit of bright sources are in good agreement, and compatible with electromagnetic simulations. Combining all the baselines, we make maps around bright sources and show that the array behaves as expected. A few hundred hours of observations at different declinations have been used to study the array geometry and pointing imperfections, as well as the instrument noise behaviour. We show that the system temperature is below 80 K for most feed antennas and that noise fluctuations decrease as expected with integration time, at least up to a few hundred seconds. Analysis of long integrations, from 10 nights of observations of the North Celestial Pole (NCP), yielded visibilities with amplitudes of 20–30 mK, consistent with the expected signal from the NCP radio sky with |<10 {\lt}10\,| mK precision for 1 MHz × 1 min binning. Hi-pass filtering the spectra to remove smooth spectrum signal yields a residual consistent with zero signal at the |0.5 0.5\,| mK level
    corecore