12 research outputs found

    Mismatch Repair Proteins Initiate Epigenetic Alterations during Inflammation-Driven Tumorigenesis

    Get PDF
    Aberrant silencing of genes by DNA methylation contributes to cancer, yet how this process is initiated remains unclear. Using a murine model of inflammation-induced tumorigenesis, we tested the hypothesis that inflammation promotes recruitment of epigenetic proteins to chromatin, initiating methylation and gene silencing in tumors. Compared with normal epithelium and noninflammation-induced tumors, inflammation-induced tumors gained DNA methylation at CpG islands, some of which are associated with putative tumor suppressor genes. Hypermethylated genes exhibited enrichment of repressive chromatin marks and reduced expression prior to tumorigenesis, at a time point coinciding with peak levels of inflammation-associated DNA damage. Loss of MutS homolog 2 (MSH2), a mismatch repair (MMR) protein, abrogated early inflammation-induced epigenetic alterations and DNA hypermethylation alterations observed in inflammation-induced tumors. These results indicate that early epigenetic alterations initiated by inflammation and MMR proteins lead to gene silencing during tumorigenesis, revealing a novel mechanism of epigenetic alterations in inflammation-driven cancer. Understanding such mechanisms will inform development of pharmacotherapies to reduce carcinogenesis

    Reduction of Murine Colon Tumorigenesis Driven by Enterotoxigenic Bacteroides fragilis Using Cefoxitin Treatment

    Get PDF
    BACKGROUND: Chronic inflammation and composition of the colon microbiota have been associated with colorectal cancer in humans. The human commensal enterotoxigenic Bacteroides fragilis (ETBF) is linked to both inflammatory bowel disease and colorectal cancer and, in our murine model, causes interleukin 17A (IL-17A)-dependent colon tumors. In these studies, we hypothesized that persistent colonization by ETBF is required for tumorigenesis. METHODS: We established a method for clearing ETBF in mice, using the antibiotic cefoxitin. Multiple intestinal neoplasia mice were colonized with ETBF for the experiment duration or were cleared of infection after 5 or 14 days. Gross tumors and/or microadenomas were then evaluated. In parallel, IL-17A expression was evaluated in wild-type littermates. RESULTS: Cefoxitin treatment resulted in complete and durable clearance of ETBF colonization. We observed a stepwise increase in median colon tumor numbers as the duration of ETBF colonization increased before cefoxitin treatment. ETBF eradication also significantly decreased mucosal IL-17A expression. CONCLUSIONS: The timing of ETBF clearance profoundly influences colon adenoma formation, defining a period during which the colon is susceptible to IL-17A-dependent tumorigenesis in this murine model. This model system can be used to study the microbiota-dependent and molecular mechanisms contributing to IL-17A-dependent colon tumor initiation

    Mismatch Repair Proteins Initiate Epigenetic Alterations during Inflammation-Driven Tumorigenesis

    No full text
    Aberrant silencing of genes by DNA methylation contributes to cancer, yet how this process is initiated remains unclear. Using a murine model of inflammation-induced tumorigenesis, we tested the hypothesis that inflammation promotes recruitment of epigenetic proteins to chromatin, initiating methylation and gene silencing in tumors. Compared with normal epithelium and noninflammation-induced tumors, inflammation-induced tumors gained DNA methylation at CpG islands, some of which are associated with putative tumor suppressor genes. Hypermethylated genes exhibited enrichment of repressive chromatin marks and reduced expression prior to tumorigenesis, at a time point coinciding with peak levels of inflammation-associated DNA damage. Loss of MutS homolog 2 (MSH2), a mismatch repair (MMR) protein, abrogated early inflammation-induced epigenetic alterations and DNA hypermethylation alterations observed in inflammation-induced tumors. These results indicate that early epigenetic alterations initiated by inflammation and MMR proteins lead to gene silencing during tumorigenesis, revealing a novel mechanism of epigenetic alterations in inflammation-driven cancer. Understanding such mechanisms will inform development of pharmacotherapies to reduce carcinogenesis

    Bacterial-Driven Inflammation and Mutant BRAF Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to Immune Checkpoint Therapy

    Get PDF
    Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade

    Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells

    No full text
    Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using ApcMin mice colonized with the human pathobiont enterotoxigenic Bacteroides fragilis (ETBF) as a model of microbe-induced colon tumorigenesis, we show that the Bacteroides fragilis toxin (BFT) triggers a pro-carcinogenic, multi-step inflammatory cascade requiring IL-17R, NF-κB, and Stat3 signaling in colonic epithelial cells (CECs). Although necessary, Stat3 activation in CECs is not sufficient to trigger ETBF colon tumorigenesis. Notably, IL-17-dependent NF-κB activation in CECs induces a proximal to distal mucosal gradient of C-X-C chemokines, including CXCL1, that mediates the recruitment of CXCR2-expressing polymorphonuclear immature myeloid cells with parallel onset of ETBF-mediated distal colon tumorigenesis. Thus, BFT induces a pro-carcinogenic signaling relay from the CEC to a mucosal Th17 response that results in selective NF-κB activation in distal colon CECs, which collectively triggers myeloid-cell-dependent distal colon tumorigenesis

    data_sheet_1_Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection.DOCX

    No full text
    <p>Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox<sup>−/−</sup> mice. In contrast, with DSS, Smox<sup>−/−</sup> mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox<sup>−/−</sup> mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox<sup>−/−</sup> mice. In both models, putrescine and spermidine were increased in WT mice; in Smox<sup>−/−</sup> mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.</p

    Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection

    No full text
    Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox−/− mice. In contrast, with DSS, Smox−/− mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox−/− mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox−/− mice. In both models, putrescine and spermidine were increased in WT mice; in Smox−/− mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine
    corecore