1,364 research outputs found

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    Selective N,N-Dibenzylation of primary aliphatic amines with dibenzylcarbonate in the presence of phosphonium salts

    Get PDF
    In the presence of catalytic amounts of tetraalkylphosphonium salts and under solventless conditions, primary aliphatic amines (RNH2: R ) PhCH2, Ph(CH2)2, n-decyl, and 1-naphthylmethyl) are efficiently N-benzylated to the corresponding RN(CH2Ph)2, using dibenzyl carbonate as the benzylating reagent. Compared to the reaction run without salt, where the competitive formation of the benzyl carbamate is favored, the phosphonium salt promotes high selectivity toward the benzylated amine and an increase of the reaction rate as well. However, in a single case explored for an amino acidic compound, namely 4-(aminomethyl)benzoic acid [4-(NH2CH2)C6H4CO2H], both N,N-dibenzylation and esterification of the acid group were observed. Analysis of the IR vibrational modes of benzylamine in the presence of tetrabutylphosphonium bromide supports the hypothesis that this enhanced selectivity may be due to an acid-base interaction between the salt and the amine, which increases the steric bulk of the amine and favors attack of the nucleophile on the less hindered alkyl terminus of dibenzyl carbonate

    Pressure-induced structural and electronic transition in KTb(MoO<sub>4</sub>)<sub>2</sub> through Raman and optical studies

    Get PDF
    Raman and optical absorption studies under pressure have been conducted on KTb(MoO4)2 up to 35.5 GPa. A phase transformation occurs at 2.7 GPa when the crystal is pressurized at ambient temperature in a hydrostatic pressure medium. The sample changes to a deep yellow color at the transition and visibly contracts in theÎą-axis direction. The color shifts to red on further pressure increase. The Raman spectral features and the X-ray powder pattern change abruptly at the transition indicating a structural change. The pressure-induced transition appears to be a property of the layer-type alkali rare earth dimolybdates. However, the color change at the transition in KTb(MoO4)2 is rather unusual and is attributed to a valence change in Tb initiated by the structural transition and consequent intervalence charge transfer between Tb and Mo.In situ high pressure X-ray diffraction data suggest that phase II could be orthorhombic with a unit cell having 3 to 4% smaller volume than that of phase I

    Corneal perforation in ocular graft-versus-host disease

    Get PDF
    PURPOSE: Corneal perforation is a rare, vision-threatening complication of ocular graft-versus-host disease (GVHD) and is not well understood. Our objective was to examine the clinical disease course and histopathologic correlation in patients who progressed to this outcome. METHODS: This study is a retrospective case series from four academic centers in the United States. All patients received a hematopoietic stem cell transplant (HSCT) prior to developing ocular GVHD. Variables of interest included patient demographics, time interval between HSCT and ocular events, visual acuity throughout clinical course, corticosteroid and infection prophylaxis regimens at time of corneal perforation, medical/surgical interventions, and histopathology. RESULTS: Fourteen eyes from 14 patients were analyzed. Most patients were male (86%) and Caucasian (86%), and average age at time of hematopoietic stem cell transplant was 47 years. The mean interval between hematopoietic stem cell transplant and diagnosis of ocular graft-versus-host disease was 9.5 months, and between hematopoietic stem cell transplant and corneal perforation was 37 months. Initial best-corrected visual acuity was 20/40 or better in 9 eyes, and all eyes had moderate or poor visual outcomes despite aggressive management, including corneal gluing in all patients followed by keratoplasty in 8 patients. The mean follow-up after perforation was 34 months (range 2-140 months). Oral prednisone was used prior to perforation in 11 patients (79%). On histopathology, representative specimens in the acute phase demonstrated ulcerative keratitis with perforation but minimal inflammatory cells and no microorganisms, consistent with sterile corneal melt in the setting of immunosuppression; and in the healed phase, filling in of the perforation site with fibrous scar. CONCLUSIONS: In these patients, an extended time interval was identified between the diagnosis of ocular graft-versus-host disease and corneal perforation. This represents a critical window to potentially prevent this devastating outcome. Further study is required to identify those patients at greatest risk as well as to optimize prevention strategies

    Strings on Bubbling Geometries

    Full text link
    We study gauge theory operators which take the form of a product of a trace with a Schur polynomial, and their string theory duals. These states represent strings excited on bubbling AdS geometries which are dual to the Schur polynomials. These geometries generically take the form of multiple annuli in the phase space plane. We study the coherent state wavefunction of the lattice, which labels the trace part of the operator, for a general Young tableau and their dual description on the droplet plane with a general concentric ring pattern. In addition we identify a density matrix over the coherent states on all the geometries within a fixed constraint. This density matrix may be used to calculate the entropy of a given ensemble of operators. We finally recover the BMN string spectrum along the geodesic near any circle from the ansatz of the coherent state wavefunction.Comment: 41 pages, 12 figures, published version in JHE

    Ischemic neurons recruit natural killer cells that accelerate brain infarction

    Full text link
    Brain ischemia and reperfusion activate the immune system. The abrupt development of brain ischemic lesions suggests that innate immune cells may shape the outcome of stroke. Natural killer (NK) cells are innate lymphocytes that can be swiftly mobilized during the earliest phases of immune responses, but their role during stroke remains unknown. Herein, we found that NK cells infiltrated the ischemic lesions of the human brain. In a mouse model of cerebral ischemia, ischemic neuron-derived fractalkine recruited NK cells, which subsequently determined the size of brain lesions in a T and B cell-independent manner. NK cell-mediated exacerbation of brain infarction occurred rapidly after ischemia via the disruption of NK cell tolerance, augmenting local inflammation and neuronal hyperactivity. Therefore, NK cells catalyzed neuronal death in the ischemic brain
    • …
    corecore