39 research outputs found

    A New Higher Order Differential of RAGHAV

    Get PDF
    RAGHAV is a 64-bit block cipher proposed by Bansod in 2021. It supports 80-, and 128-bit secret keys. The designer evaluated its security against typical attack, such as differential cryptanalysis, linear cryptanalysis, and so on. On the other hand, it has not been reported the security of RAGHAV against higher order differential attack, which is one of the algebraic attacks. In this paper, we applied higher order differential cryptanalysis to RAGHAV. As a results, we found a new full-round higher order characteristic of RAGHAV using 1-st order differential. Exploiting this characteristic, we also show that the full-round of RAGHAV is attackable by distinguishing attack with 2 chosen plaintexts

    Higher Order Differential Attack against Full-Round BIG

    Get PDF
    BIG is a 128-bit block cipher proposed by Demeri et al. in 2019. The number of rounds is 18 for high security. The designer evaluated its security against linear cryptanalysis. On the other hand, it has not been reported the security of BIG against higher order differential attack, which is one of the algebraic attacks. In this paper, we focused on a higher order differential of BIG. We found a new 15-round saturation characteristc of BIG using 1-st order differential by computer experiment. Exploiting this characteristic, we show that full-round BIG can be attacked with 6 chosen plaintexts and 2^(2.7) encryption operations

    Theoretical study on novel electronic properties in nanographite materials

    Full text link
    Antiferromagnetism in stacked nanographite is investigated with using the Hubbard-type model. We find that the open shell electronic structure can be an origin of the decreasing magnetic moment with the decrease of the inter-graphene distance, as experiments on adsorption of molecules suggest. Next, possible charge-separated states are considered using the extended Hubbard model with nearest-neighbor interactions. The charge-polarized state could appear, when a static electric field is present in the graphene plane for example. Finally, superperiodic patterns with a long distance in a nanographene sheet observed by STM are discussed in terms of the interference of electronic wave functions with a static linear potential theoretically. In the analysis by the k-p model, the oscillation period decreases spatially in agreement with experiments.Comment: 8 pages; 6 figures; accepted for publication in J. Phys. Chem. Solids; related Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm

    Anomalous Transport Properties in BiS2-based Superconductors LnO1−xFxBiS2 (Ln = Nd, La-Sm)

    Get PDF
    We report the electronic properties of the layered bismuth-based sulfide superconductors NdO1−xFxBiS2 (x = 0.25, 0.4, and 0.5) and La1−ySmyO0.5F0.5BiS2 (y = 0.1–0.7), which have been studied by investigation of their transport properties and X-ray diffraction. In the lightly carrier-doped NdO1−xFxBiS2 (x = 0.25 and 0.4) and La1−ySmyO0.5F0.5BiS2 (y = 0.3 and 0.4), the resistivity and Hall coefficient exhibit anomalous temperature dependences below TCDW ∼ 130 and 200 K, respectively, suggesting the formation of an energy gap on the Fermi surface associated with charge-density wave (CDW). In NdO1−xFxBiS2 (x = 0.25), the bond angles and bond lengths of the Bi–S pentahedron change their temperature dependences below ∼200 K, suggesting that a lattice instability related to the Bi–S pentahedron exists below ∼200 K, which is much higher than TCDW. These results indicate that the lattice instability of the Bi–S pentahedron can trigger a CDW transition in the low-carrier region of BiS2 superconductors

    Monocyte or white blood cell counts and β<sub>2</sub> microglobulin predict the durable efficacy of daratumumab with lenalidomide

    Get PDF
    BACKGROUND: Daratumumab is one of the most widely used treatments for relapsed/refractory multiple myeloma (MM) patients. However, not all patients achieve a lasting therapeutic response with daratumumab. OBJECTIVES: We hypothesized that a durable response to daratumumab could be predicted by the balance between the MM tumor burden and host immune status. DESIGN: We conducted a retrospective study using the real-world data in the Kansai Myeloma Forum (KMF) database. METHODS: We retrospectively analyzed 324 relapsed/refractory MM patients who were treated with daratumumab in the KMF database. RESULTS: In this study, 196 patients were treated with daratumumab, lenalidomide, and dexamethasone (DLd) regimen and 128 patients were treated with daratumumab, bortezomib, and dexamethasone (DBd) regimen. The median age at treatment, number of prior treatment regimens and time-to-next-treatment (TTNT) were 68, 4 and 8.02 months, respectively. A multivariate analysis showed that the TTNT under the DLd regimen was longer with either higher monocyte counts (analysis 1), higher white blood cell (WBC) counts (analysis 2), lower β2 microglobulin (B2MG < 5.5 mg/L) or fewer prior regimens (<4). No parameters were correlated with TTNT under the DBd regimen. CONCLUSION: We propose a simple scoring model to predict a durable effect of the DLd regimen by classifying patients into three categories based on either monocyte counts (0 points for ⩾200/μl; 1 point for <200/μl) or WBC counts (0 points for ⩾3500/μl; 1 point for <3500/μl) plus B2MG (0 points for <5.5 mg/L; 1 point for ⩾5.5 mg/L). Patients with a score of 0 showed significantly longer TTNT and significantly better survival compared to those with a score of 1 or 2 (both p < 0.001). To confirm this concept, our results will need to be validated in other cohorts

    In Orbit Timing Calibration of the Hard X-Ray Detector on Board Suzaku

    Full text link
    The hard X-ray detector (HXD) on board the X-ray satellite Suzaku is designed to have a good timing capability with a 61 μ\mus time resolution. In addition to detailed descriptions of the HXD timing system, results of in-orbit timing calibration and performance of the HXD are summarized. The relative accuracy of time measurements of the HXD event was confirmed to have an accuracy of 1.9×1091.9\times 10^{-9} s s1^{-1} per day, and the absolute timing was confirmed to be accurate to 360 μ\mus or better. The results were achieved mainly through observations of the Crab pulsar, including simultaneous ones with RXTE, INTEGRAL, and Swift.Comment: Accepted for publication on PASJ Vol.60, SP-1, 200

    Numerical Investigation of a Kretschmann-Type Surface Plasmon Resonance Waveguide Sensor

    Get PDF
    A Kretschmann-type surface plasmon resonance waveguide sensor is analyzed using the wide-angle beampropagation method (BPM) with the complex Pade approximant and the finite-difference time-domain (FDTD) methods based on the recursive convolution (RC) and piecewise linear RC (PLRC) techniques. The wavelength responses of the sensor are calculated, and a detailed comparison of the numerical results is made. The BPM results are validated through a comparison with the FDTD results, in which the PLRC technique is required in terms of accuracy. The waveguide sensor shows a maximum absorption wavelength shift from 0.609 to 0.623 μm, as the refractive index of an analyte is increased from 1.330 to 1.334, which is comparable to the sensitivity of the conventional Kretschmann configuration

    Heat-Induced Gelation of β

    No full text
    corecore