133 research outputs found

    Molecular and Genetic Determinants of Glioma Cell Invasion.

    Get PDF
    A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, "diffuse glioma", which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease

    Ocular Pathology of Fukuyama Congenital Muscular Dystrophy

    Get PDF
    Fukuyama congenital muscular dystrophy (FCMD) is one of the congenital muscular dystrophies, showing central nervous system (CNS) and ocular lesions, in addition to muscular dystrophy. It is included in α-dystroglycanopathy, an entity of muscular dystrophies caused by reduced glycosylation of α-dystroglycan (α-DG). Studies of ocular lesions are not so many, compared with those of the muscle and CNS. Clinical ocular manifestations are myopia, strabismus, retinal detachment, and so on. Since the retina has a structure partly resembling the cerebral cortex, pathological findings similar to those found in the brain have been reported. The major observation considered to be involved in the pathogenesis of retinal lesions is abnormalities in the internal limiting membrane formed by MĂŒller cells, which is corresponding to the glia limitans formed by astrocytes in the brain. Fukutin, responsible for FCMD, and α-DG are expressed in MĂŒller cells. Moreover, fukutin may be involved in synaptic functions of retinal neurons through the glycosylation of α-DG. In this chapter, ocular lesions of fetal and child FCMD patients are presented, especially focusing on pathological findings of the retina, and functions of fukutin are discussed

    CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis

    Get PDF
    Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.Fil: Blanco-PĂ©rez, Frank. Paul-ehrlich-institut;Fil: Kato, Yoichiro. Tokyo Women's Medical University;Fil: Gonzalez-Menendez, Irene. UniversitĂ€tsklinikum TĂŒbingen Medizinische FakultĂ€t;Fil: Laiño, Jonathan Emiliano. Paul-ehrlich-institut;Fil: Ohbayashi, Masaharu. Toyohashi Sozo University;Fil: Burggraf, Manja. Paul-ehrlich-institut;Fil: Krause, Maren. Paul-ehrlich-institut;Fil: Kirberg, Jörg. Paul-ehrlich-institut;Fil: Iwakura, Yoichiro. Tokyo University Of Science;Fil: Martella, Manuela. UniversitĂ€tsklinikum TĂŒbingen Medizinische FakultĂ€t;Fil: Quintanilla-Martinez, Leticia. UniversitĂ€tsklinikum TĂŒbingen Medizinische FakultĂ€t;Fil: Shibata, Noriyuki. Tokyo Women's Medical University;Fil: Vieths, Stefan. Paul-ehrlich-institut;Fil: Scheurer, Stephan. Paul-ehrlich-institut;Fil: Toda, Masako. Paul-ehrlich-institut; . Tohoku University

    BUR Kinase Selectively Regulates H3 K4 Trimethylation and H2B Ubiquitylation through Recruitment of the PAF Elongation Complex

    Get PDF
    Histone-lysine methylation is linked to transcriptional regulation and the control of epigenetic inheritance. Lysine residues can be mono-, di-, or trimethylated, and it has been suggested that each methylation state of a given lysine may impart a unique biological function [1 and 2]. In yeast, histone H3 lysine 4 (K4) is mono-, di-, and trimethylated by the Set1 histone methyltransferase [3 and 4]. Previous studies show that Set1 associates with RNA polymerase II and demarcates transcriptionally active genes with K4 trimethylation [5]. To determine whether K4 trimethylation might be selectively regulated, we screened a library of yeast deletion mutants associated with transcriptional regulation and chromatin function. We identified BUR2, a cyclin for the Bur1/2 (BUR) cyclin-dependent protein kinase, as a specific regulator of K4 trimethylation [ 6]. Surprisingly, BUR also regulated H2B monoubiquitylation, whereas other K4 methylation states and H3 lysine 79 (K79) methylation were unaffected. Synthetic genetic array (SGA) and transcription microarray analyses of a BUR2 mutant revealed that BUR is functionally similar to the PAF, Rad6, and Set1 complexes. These data suggest that BUR acts upstream of these factors to control their function. In support, we show that recruitment of the PAF elongation complex to genes is significantly impaired in a BUR2 deletion. Our data reveal a novel function for the BUR kinase in transcriptional regulation through the selective control of histone modifications

    Genome-wide identification of regulatory elements in Sertoli cells

    Get PDF
    A current goal of molecular biology is to identify transcriptional networks that regulate cell differentiation. However, identifying functional gene regulatory elements has been challenging in the context of developing tissues where material is limited and cell types are mixed. To identify regulatory sites during sex determination, we subjected Sertoli cells from mouse fetal testes to DNaseI-seq and ChIP-seq for H3K27ac. DNaseI-seq identified putative regulatory sites around genes enriched in Sertoli and pregranulosa cells; however, active enhancers marked by H3K27ac were enriched proximal to only Sertoli-enriched genes. Sequence analysis identified putative binding sites of known and novel transcription factors likely controlling Sertoli cell differentiation. As a validation of this approach, we identified a novel Sertoli cell enhancer upstream of Wt1, and used it to drive expression of a transgenic reporter in Sertoli cells. This work furthers our understanding of the complex genetic network that underlies sex determination and identifies regions that potentially harbor non-coding mutations underlying disorders of sexual development

    Histone H3.3 maintains genome integrity during mammalian development

    Get PDF
    Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development
    • 

    corecore