85 research outputs found

    The boundary of the moduli space of stable cubic fivefolds

    Full text link
    By GIT theory due to Mumford, the moduli space of stable cubic fivefolds is compactified by adding non stable semi-stable (i.e. strictly semi-stable) locus. In this paper, we prove that this locus consists of 19 components. Moreover, we give a description of equation and singularity of cubic fivefold corresponding to the generic point in each component.Comment: 14 page

    Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator

    Get PDF
    AbstractThe phenotypes of mice carrying clock gene mutations have been critical to understanding the mammalian clock function. However, behavior does not necessarily reflect cell-autonomous clock phenotypes, because of the hierarchical dominance of the central clock. We performed cell-based siRNA knockdown and cDNA overexpression and monitored rhythm using bioluminescent reporters of clock genes. We found that knockdown of DBP, D-box positive regulator, in our model led to a short-period phenotype, whereas overexpressing of DBP produced a long-period rhythm when compared to controls. Furthermore, knockdown and overexpressing of E4BP4, D-box negative regulator, led to an opposite effect of DBP. Our experiments demonstrated that D-box regulators play a crucial role in determining the period length of Per1 and Per2 promoter-driven circadian rhythms in Rat-1 fibroblasts

    Transcriptional Repression of Cdc25B by IER5 Inhibits the Proliferation of Leukemic Progenitor Cells through NF-YB and p300 in Acute Myeloid Leukemia

    Get PDF
    The immediately-early response gene 5 (IER5) has been reported to be induced by γ-ray irradiation and to play a role in the induction of cell death caused by radiation. We previously identified IER5 as one of the 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide (TMPP)-induced transcriptional responses in AML cells, using microarrays that encompassed the entire human genome. However, the biochemical pathway and mechanisms of IER5 function in regulation of the cell cycle remain unclear. In this study, we investigated the involvement of IER5 in the cell cycle and in cell proliferation of acute myeloid leukemia (AML) cells. We found that the over-expression of IER5 in AML cell lines and in AML-derived ALDHhi (High Aldehyde Dehydrogenase activity)/CD34+ cells inhibited their proliferation compared to control cells, through induction of G2/M cell cycle arrest and a decrease in Cdc25B expression. Moreover, the over-expression of IER5 reduced colony formation of AML-derived ALDHhi/CD34+ cells due to a decrease in Cdc25B expression. In addition, over-expression of Cdc25B restored TMPP inhibitory effects on colony formation in IER5-suppressed AML-derived ALDHhi/CD34+ cells. Furthermore, the IER5 reduced Cdc25B mRNA expression through direct binding to Cdc25B promoter and mediated its transcriptional attenuation through NF-YB and p300 transcriptinal factors. In summary, we found that transcriptional repression mediated by IER5 regulates Cdc25B expression levels via the release of NF-YB and p300 in AML-derived ALDHhi/CD34+ cells, resulting in inhibition of AML progenitor cell proliferation through modulation of cell cycle. Thus, the induction of IER5 expression represents an attractive target for AML therapy

    Identification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription

    Get PDF
    It has been proposed that robust rhythmic gene expression requires clock-controlled elements (CCEs). Transcription of Per1 was reported to be regulated by the E-box and D-box in conventional reporter assays. However, such experiments are inconclusive in terms of how the CCEs and their combinations determine the phase of the Per1 gene. Whereas the phase of Per2 oscillation was found to be the most delayed among the three Period genes, the phase-delaying regions of the Per2 promoter remain to be determined. We therefore investigated the regulatory mechanism of circadian Per1 and Per2 transcription using an in vitro rhythm oscillation-monitoring system. We found that the copy number of the E-box might play an important role in determining the phase of Per1 oscillation. Based on real-time bioluminescence assays with various promoter constructs, we provide evidence that the non-canonical E-box is involved in the phase delay of Per2 oscillation. Transfection experiments confirmed that the non-canonical E-box could be activated by CLOCK/BMAL1. We also show that the D-box in the third conserved segment of the Per2 promoter generated high amplitude. Our experiments demonstrate that the copy number and various combinations of functional CCEs ultimately led to different circadian phases and amplitudes

    FLOW CHARACTERISTICS of r-Fe203-HYDROCARBON SLURRY IN THE PRESENCE OF VARIOUS FATTY ACIDS

    Get PDF
    The effect of some fatty acids on the flocculation and dispersion properties of r-Fe203 particles in magnetic slurry was investigated. For preparation of the magnetic slurries in this experiments, r-Fe203 powders, some straight chained fatty acids with carbon numbers of C9-C21 in the alkyl chain and toluene-cyclohexane solution were used. The rheological properties of the slurry,namely the flow curve,yield stress and sedimentation volume of the r-Fe203 slurry were measured. It was found that the flow characteristics of the slurry varies depending on the alkyl chain length for each fatty acid added. The addition of stearic acid gives the best dispersion in our experimental trials. From the result of the calculation of the energy acting between particles,it was found that r-Fe203 particles in the slurry have a strongly magnetic attractive force

    Activation of AMPA Receptors in the Suprachiasmatic Nucleus Phase-Shifts the Mouse Circadian Clock In Vivo and In Vitro

    Get PDF
    The glutamatergic neurotransmission in the suprachiasmatic nucleus (SCN) plays a central role in the entrainment of the circadian rhythms to environmental light-dark cycles. Although the glutamatergic effect operating via NMDAR (N-methyl D-aspartate receptor) is well elucidated, much less is known about a role of AMPAR (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor) in circadian entrainment. Here we show that, in the mouse SCN, GluR2 and GluR4 AMPAR subtypes are abundantly expressed in the retinorecipient area. In vivo microinjection of AMPA in the SCN during the early subjective night phase-delays the behavioral rhythm. In the organotypic SCN slice culture, AMPA application induces phase-dependent phase-shifts of core-clock gene transcription rhythms. These data demonstrate that activation of AMPAR is capable of phase-shifting the circadian clock both in vivo and in vitro, and are consistent with the hypothesis that activation of AMPA receptors is a critical step in the transmission of photic information to the SCN
    corecore