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a b s t r a c t

The phenotypes of mice carrying clock gene mutations have been critical to understanding the mam-
malian clock function. However, behavior does not necessarily reflect cell-autonomous clock pheno-
types, because of the hierarchical dominance of the central clock. We performed cell-based siRNA
knockdown and cDNA overexpression and monitored rhythm using bioluminescent reporters of clock
genes. We found that knockdown of DBP, D-box positive regulator, in our model led to a short-period
phenotype, whereas overexpressing of DBP produced a long-period rhythm when compared to con-
trols. Furthermore, knockdown and overexpressing of E4BP4, D-box negative regulator, led to an
opposite effect of DBP. Our experiments demonstrated that D-box regulators play a crucial role in
determining the period length of Per1 and Per2 promoter-driven circadian rhythms in Rat-1
fibroblasts.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction central and peripheral oscillators. The suprachiasmatic nucleus
Mammalian circadian rhythms are driven by a circadian oscilla-
tor consisting of intertwined positive and negative transcription/
translation feedback loops involving a set of clock genes that inter-
act through three major clock regulatory elements: the E-box, RRE,
and D-box [1,2]. In the core feedback loop, CLOCK and BMAL1 hete-
rodimerize and induce the transcription of Per and Cry genes
through E-boxes [3–7]. The PER and CRY proteins accumulate in
the cytosol and are then translocated, following phosphorylation,
into the nucleus where they inhibit the activity of CLOCK and
BMAL1. This core feedback loop is modulated by a second feedback
loop composed of ROR and REV-ERB, which drives a circadian
rhythm in Bmal1 transcription [8–11]. DBP and E4BP4 are able to
activate and suppress transcriptional activity, respectively,
through the same sequence called as D-box [12]. These additional
loops might contribute to stabilize and fine-tuning of core PER/CRY
feedback loop.

The phenotypes of mice carrying clock gene mutations have
been critical to understanding the role of each clock component
in the overall functionality of the molecular clock [13]. However,
behavior does not necessarily reflect cell-autonomous clock phe-
notypes [14]. The mammalian circadian system contains both
chemical Societies. Published by E
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(SCN) hierarchical dominance can compensate for severe intrinsic
genetic defects in peripheral clocks [15]. Indeed, the negative limb
of the core clockwork, Per1, Per2 and Cry1 are required to sustain
circadian rhythm in peripheral tissues [14]. The role of PER/CRY
feedback loop and interlocking RRE regulatory loop, consisting of
ROR and REV-ERB that regulate Bmal1 expression, has been well-
characterized [16]. By contrast, the contribution of the D-box reg-
ulatory loop remains relatively uncharacterized with respect to the
cell-autonomous circadian oscillations. Therefore, it is necessary to
examine the roles of DBP and E4BP4 on the cell-autonomous tran-
scriptional oscillation of clock gene promoters.

In the present study, we performed cell-based small-interfering
RNA (siRNA) knockdown and complementary DNA (cDNA) overex-
pression, and monitored rhythm using bioluminescent reporters of
clock genes. Here, we provide demonstration that cellular DBP and
E4BP4 proteins are critical for determining the circadian period
length.
2. Materials and methods

2.1. Cell culture

Rat-1 fibroblasts were obtained from the American Type Cul-
ture Collection (Manassas, VA), and grown in the recommended
medium and conditions.
lsevier B.V. All rights reserved.
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Fig. 1. Temporal expression profiles of clock genes in Rat-1 fibroblasts after
dbcAMP treatment. Quantification of temporal changes in Per2, Bmal1, and Clock
mRNA. Top levels of each mRNA were arbitrarily set to 1. The time shown is after
dbcAMP stimulation.
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2.2. Plasmid construction

Construction of reporter (mPer1 and mPer2-dLuc) and expres-
sion vectors (pCMV-DBP and pCMV-E4BP4) were described previ-
ously [2,11,17].

2.3. siRNA

We purchased the following pre-designed siRNAs and negative
controls for knockdown experiments from Ambion (Austin, TX) or
Qiagen (Valencia, CA): siBmal1 (Ambion GGAUCAAA AAUGC AAG
GGAtt); siClock (Qiagen r(GGCAAAUCAUGUUACUAUA)dTdT); siCry
1 (Qiagen r(CCUUUAUGACUUAGACAGA)dTdT); siRev-erbAa (Ambi-
on CCUAUGCCCAUGACAAAUUtt); siDbp (Ambion GGUACAAGAA-
CAAUGAAGCtt); siE4bp4 (Ambion GCUCCGGAUUAAAGCCAAGtt);
and negative control (Ambion catalog number AM4611; Qiagen cat-
alog number 1027280).

2.4. Real-time monitoring of bioluminescence and analysis

Rat-1 cells were plated onto a 35-mm dish at a density of
3 � 105 cells/dish 24 h before transfection. The cells were trans-
fected with the Lipofectamine 2000 transfection reagent (Invit-
rogen, Carlsbad, CA) in accordance with the manufacturer’s
instructions. For the cDNA expression experiments, the cells in
each dish were transfected with 1.0 lg mPer1 and mPer2-dLuc
plus 0, 0.1, 0.3, or 1.0 lg of the expression vectors. We used
the pCI-neo or pCMV-Sport6 plasmids to adjust the total
amount of DNA in each transfection to 2.0 lg. For the siRNA
knockdown experiments, the cells in each dish were transfected
with 1.0 lg of the mPer2-dLuc plus 50 nM target siRNAs or neg-
ative control siRNA. At 24 h post-transfection, dibutyryl cyclic
AMP (dbcAMP; Wako Pure Chemical Industries Ltd.) was added
at the final concentration of 1 mM. In the presence of 0.1 mM
luciferin (Promega), light emission was measured with photo-
multiplier tube detector assemblies (Hamamatsu Photonics,
Hamamatsu, Japan), and luminescence was observed continu-
ously for �5 days at 30 �C. The period length was analyzed by
calculating the value from the third to the eighth peak of oscil-
lation as described in previous studies [17,18].

2.5. Quantitation of mRNAs by real-time reverse transcription-
polymerase chain reaction (RT-PCR)

Quantitative PCR (Q-PCR) was performed as described previously
[2]. The glyceraldehyde 3-phosphate dehydrogenase (Gapdh)
expression levels were quantified and used as an internal control.
The oligonucleotide DNA primers were described at Supplementary
Table 1.

2.6. Statistical analysis

Group differences were determined using Student’s t-test. Multi-
ple comparisons among group mean differences were checked using
Dunnett’s test.
3. Results

We first confirmed that the phase of Bmal1 oscillation in cul-
tured Rat-1 cells after stimulation with dbcAMP was almost the
opposite phase of Per2, whereas Clock mRNA levels did not display
a clear rhythm (Fig. 1). These observations were consistent with
data of mRNA expression in mouse peripheral tissue [2]. In order
to estimate subtle rhythm change, we adopted a real time lucifer-
ase reporter system.
After the mPer2-dLuc reporter and a siRNA specific for one of
the clock-related genes were co-transfected in Rat-1 cells, biolumi-
nescence was measured. At 24 h post-transfection, dbcAMP was
added for stimulation. The circadian oscillation of mPer2 was abol-
ished by siBmal1 and siClock (Fig. 2A–C). siCry1 had little effect on
the period length of the mPer2 oscillation, although biolumines-
cence was significantly reduced (Fig. 2A–C). siRev-erbAa had little
effect on the amplitude and period length of the mPer2 oscillation
(Fig. 2A–C). siDbp caused a shorter period as compared to the neg-
ative control (0.96 ± 0.24 h), whereas siE4bp4 caused a longer per-
iod (2.03 ± 0.77 h) (Fig. 2A–C). To better visualize the phase
differences, data sets were de-trended by subtracting the 24 h run-
ning average from the raw data (Fig. 2B). The depletion of the D-
box regulators led to a modulation of the period length of the
mPer2 oscillation (Fig. 2C). In all treatments, we observed 40–90%
decrease in gene expression of the targeted gene (Fig. 2D). DBP
and E4BP4 knockdown was confirmed by western blotting (Sup-
plementary Fig. 1). These results suggest that E-box regulators gen-
erate the rhythm oscillation, and D-box regulators modulate the
period length.

In order to examine the roles of DBP and E4BP4 on the cell-auton-
omous transcriptional oscillation of mPer2 gene, we performed our
in vitro-rhythm assay using cDNA overexpression of these genes in
Rat-1 cells. We confirmed that exogenously transfected transgenes
(DBP and E4BP4 protein) are functional in conventional reporter as-
say (Supplementary Fig. 2). The overexpression of DBP resulted in a
longer period (0.90 ± 0.14 h), whereas E4BP4 overexpression re-
sulted in a shorter period (0.63 ± 0.09 h) (Fig. 3A–C). The overexpres-
sion of the D-box regulators led to a modulation of the period length
of the mPer2 oscillation in a dose-dependent manner (Fig. 3C). In
terms of the period length, DBP and E4BP4 showed opposite effects
in the siRNA-knockdown and cDNA-overexpression studies, indicat-
ing that these genes control the period length of the circadian
rhythm.

To avoid the possibility that the effects of the period length were
mPer2 specific phenomena, we performed cDNA overexpression
studies of DBP and E4BP4 with a real-time luciferase-monitoring as-
say using the mPer1 promoter-driven luciferase reporter. DBP and
E4BP4 overexpression caused a longer and a shorter period as com-
pared to the negative control, respectively (Fig. 4A–C), which is con-
sistent with the response observed in the cDNA overexpression
studies using the mPer2 promoter reporter (Fig. 3).

The D-box cis element was included in mPer1 and mPer2 pro-
moter construct. If the intrinsic circadian clock oscillators might
be affected in response to the manipulation of the D-box
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Fig. 2. Effect of the siRNA knockdown of clock and clock-controlled genes on the cell autonomous circadian transcription of mPer2. (A) After siRNA and mPer2-dLuc were co-
transfected in Rat-1 cells, bioluminescence was measured with photomultiplier tube detector assemblies. The red and green lines represent 50 nM of the negative control and
target siRNA, respectively. The time shown is after dbcAMP stimulation. (B) The signals obtained in (A) were de-trended. (C) Period length differences for cells transfected
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regulators, clock-controlled element-driven circadian biolumines-
cence rhythms should be altered regardless of whether exoge-
nously transfected reporter construct contains D-box elements.
We performed cDNA overexpression studies of DBP genes with a
real-time luciferase-monitoring assay using the E0-box region-
SV40 driven luciferase reporter. This promoter construct did not
contain the D-box elements but essential clock-controlled element
to generate cell-autonomous circadian oscillation [17,18]. The
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E0-box SV40-dLuc displayed clear circadian oscillation, and DBP
overexpression caused a longer period (Supplementary Fig. 3). In
addition, we performed cDNA overexpression studies of DBP genes
with a real-time luciferase-monitoring assay using the D-box mu-
tant of mPer2 promoter driven luciferase reporter. A similar period
change was observed with this promoter driven luciferase reporter
(Supplementary Fig. 4), suggesting that the intrinsic circadian clock
oscillators might be affected by DBP protein levels. These results
indicate that D-box regulators contribute to maintaining the stable
period length of the mammalian cellular circadian clock.

4. Discussion

Molecular phenotypes determined from peripheral tissues are
strongly influenced by the state of the SCN [15]. We confirmed
whether our results in cultured cells reflect the phenotypes of
genetically modified animals lacking these clock-related genes.
Mice homozygous for a null allele of Bmal1 have severely disrupted
behavioral rhythms [6]. Mice homozygous for a DBP-null allele dis-
play a shorter free-running period [19]. Consistently, Bmal1 knock-
down let to circadian disruption and DBP to shorter period in our
model.

However, not all the phenotypes we observed are identical to
those of corresponding knockout mouse. Recent genetic evidence
in mice indicates that peripheral oscillators are arrhythmic with-
out CLOCK [20], whereas CLOCK and NPAS2 have partially redun-
dant functions within the SCN [21]. The circadian oscillation of
mPer2 was dramatically diminished by siCry1, whereas the behav-
ioral rhythm is maintained in the corresponding knockout mouse
[22]. There was a trend in our cell-culture system that showed
more severe rhythm generation phenotypes than those seen in
the mice carrying clock gene mutations. This may be due to the
hierarchical dominance of the central clock, or fundamental differ-
ences in the clock mechanism between tissues.

Here, we provide demonstration that DBP and E4BP4 inversely
regulate the period length of the mPer1 and mPer2 oscillation in
cultured fibroblasts. Recent experiments revealed that PAR-do-
main basic leucine zipper (PAR bZip) proteins, DBP, TEF, and HLF
control the expression of many enzymes and regulators involved
in detoxification and drug metabolism in liver and kidney [23]. In-
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deed, PAR bZip triple knockout mice are hypersensitive to xenobi-
otic compounds, and display a deficiency in detoxification [23]. We
have reported that abnormal rhythmicity of DBP and its target
metabolic enzyme such as CYP7A1 deteriorates hypercholesterol-
emia in rats with irregular feeding [24]. Therefore, it has been rec-
ognized that the D-box regulators seem to be a component of the
circadian output pathway rather than a master gene of the clock.
However, our results suggest that the period length of mPer2 oscil-
lation is more sensitive to modulation of the amounts of the D-box
regulators rather than the E-box and RRE regulators, raising the
possibility that, among the three clock elements, D-box regulators
play a prominent role in determining the period length in the cel-
lular circadian clock.

D-box cis element-dependent transcription might play a
pivotal role in determining the cellular period length. Indeed,
after introducing siDbp and siE4bp4 into Rat-1 cells, endoge-
nous Per2 mRNA levels decreased to 70% and increased to
130% of the negative control, respectively (Supplementary
Fig. 5). On the other hand, we suggest that protein–protein
interaction might play an important role in this system. Ohno
et al. reported that E4BP4 protein interacts with PER2 and
CRY2 [25]. These associations might affect its repression activ-
ity and regulate the core circadian clock network. While the
mechanism by which DBP and E4BP4 proteins regulate the
circadian period length has not been fully clarified, these mul-
tiple pathways might contribute to the cellular period length.

We are ultimately interested in the impact and role of al-
tered rhythms in human disease. Some studies have shown
that clock genes polymorphisms are associated with several
sleep disorders such as familial advanced sleep phase syn-
drome [26,27] and delayed sleep phase syndrome [28]. To
our knowledge, polymorphism analysis of the D-box regulators
had never before been reported. These findings should initiate
further studies into the clock-related perturbations to human
disease, including not only drug reactivities and metabolic dis-
orders but also circadian rhythm sleep disorders.
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