19,035 research outputs found
Thermodynamic properties of the one-dimensional Kondo insulators studied by the density matrix renormalization group method
Thermodynamic properties of the one-dimensional Kondo lattice model at
half-filling are studied by the density matrix renormalization group method
applied to the quantum transfer matrix. Spin susceptibility, charge
susceptibility, and specific heat are calculated down to T=0.1t for various
exchange constants. The obtained results clearly show crossover behavior from
the high temperature regime of nearly independent localized spins and
conduction electrons to the low temperature regime where the two degrees of
freedom couple strongly. The low temperature energy scales of the charge and
spin susceptibilities are determined and shown to be equal to the quasiparticle
gap and the spin gap, respectively, for weak exchange couplings.Comment: 4 pages, 3 Postscript figures, REVTeX, submitted to J. Phys. Soc. Jp
A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states
We present relativistic hydrostatic equations for obtaining irrotational
binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations
derived here are different from those previously given by Bonazzola,
Gourgoulhon, and Marck, and have a simpler and more tractable form for
computation in numerical relativity. We also present hydrostatic equations for
computation of equilibrium irrotational binary stars in first post-Newtonian
order.Comment: 5 pages, corrected eqs.(2.10), (2.11) and (3.1
Dynamical instability of differentially rotating stars
We study the dynamical instability against bar-mode deformation of
differentially rotating stars. We performed numerical simulation and linear
perturbation analysis adopting polytropic equations of state with the
polytropic index . It is found that rotating stars of a high degree of
differential rotation are dynamically unstable even for the ratio of the
kinetic energy to the gravitational potential energy of .
Gravitational waves from the final nonaxisymmetric quasistationary states are
calculated in the quadrupole formula. For rotating stars of mass
and radius several 10 km, gravitational waves have frequency several 100 Hz and
effective amplitude at a distance of Mpc.Comment: 5 pages, 7 figures, accepted for publication in MNRA
Thermodynamics of doped Kondo insulator in one dimension: Finite Temperature DMRG Study
The finite-temperature density-matrix renormalization-group method is applied
to the one-dimensional Kondo lattice model near half filling to study its
thermodynamics. The spin and charge susceptibilities and entropy are calculated
down to T=0.03t. We find two crossover temperatures near half filling. The
higher crossover temperature continuously connects to the spin gap at half
filling, and the susceptibilities are suppressed around this temperature. At
low temperatures, the susceptibilities increase again with decreasing
temperature when doping is finite. We confirm that they finally approach to the
values obtained in the Tomonaga-Luttinger (TL) liquid ground state for several
parameters. The crossover temperature to the TL liquid is a new energy scale
determined by gapless excitations of the TL liquid. The transition from the
metallic phase to the insulating phase is accompanied by the vanishing of the
lower crossover temperature.Comment: 4 pages, 7 Postscript figures, REVTe
Non-Abelian Dual Superconductor Picture for Quark Confinement
We give a theoretical framework for defining and extracting non-Abelian
magnetic monopoles in a gauge-invariant way in SU(N) Yang-Mills theory to study
quark confinement. Then we give numerical evidences that the non-Abelian
magnetic monopole defined in this way gives a dominant contribution to
confinement of fundamental quarks in SU(3) Yang-Mills theory, which is in sharp
contrast to the SU(2) case in which Abelian magnetic monopoles play the
dominant role for quark confinement.Comment: 9 pages, 3 figures (4 ps files); The paper was extensively revised,
focusing especially on the lattice par
MAGMA: a 3D, Lagrangian magnetohydrodynamics code for merger applications
We present a new, completely Lagrangian magnetohydrodynamics code that is
based on the SPH method. The equations of self-gravitating hydrodynamics are
derived self-consistently from a Lagrangian and account for variable smoothing
length (``grad-h''-) terms in both the hydrodynamic and the gravitational
acceleration equations. The evolution of the magnetic field is formulated in
terms of so-called Euler potentials which are advected with the fluid and thus
guarantee the MHD flux-freezing condition. This formulation is equivalent to a
vector potential approach and therefore fulfills the
-constraint by construction. Extensive tests in
one, two and three dimensions are presented. The tests demonstrate the
excellent conservation properties of the code and show the clear superiority of
the Euler potentials over earlier magnetic SPH formulations.Comment: 18 pages, 17 Figures, a high resolution copy of the paper can be
found at http://www.faculty.iu-bremen.de/srosswog/MAGMA.pd
Solid Chemical Radiation Dosimeter Semiannual Report
Temperature and X-irradiation strength effects on acid production and color changes in solid chemical radiation dosimete
Noiseless Collective Motion out of Noisy Chaos
We consider the effect of microscopic external noise on the collective motion
of a globally coupled map in fully desynchronized states. Without the external
noise a macroscopic variable shows high-dimensional chaos distinguishable from
random motion. With the increase of external noise intensity, the collective
motion is successively simplified. The number of effective degrees of freedom
in the collective motion is found to decrease as with the
external noise variance . It is shown how the microscopic noise can
suppress the number of degrees of freedom at a macroscopic level.Comment: 9 pages RevTex file and 4 postscript figure
Coupled charge and valley excitations in graphene quantum Hall ferromagnets
Graphene is a two-dimensional carbon material with a honeycomb lattice and
Dirac-type low-energy spectrum. In a strong magnetic field, where Coulomb
interactions dominate against disorder broadening, quantum Hall ferromagnetic
states realize at integer fillings. Extending the quantum Hall ferromagnetism
to the fractional filling case of massless Dirac fermions, we study the
elementally charge excitations which couple with the valley degrees of freedom
(so-called valley skyrmions). With the use of the density matrix renomalization
group (DMRG) method, the excitation gaps are calculated and extrapolated to the
thermodynamic limit. These results exhibit numerical evidences and criterions
of the skyrmion excitations in graphene.Comment: 5 pages, 5 figure
- …