research

Dynamical instability of differentially rotating stars

Abstract

We study the dynamical instability against bar-mode deformation of differentially rotating stars. We performed numerical simulation and linear perturbation analysis adopting polytropic equations of state with the polytropic index n=1n=1. It is found that rotating stars of a high degree of differential rotation are dynamically unstable even for the ratio of the kinetic energy to the gravitational potential energy of O(0.01)O(0.01). Gravitational waves from the final nonaxisymmetric quasistationary states are calculated in the quadrupole formula. For rotating stars of mass 1.4M⊙1.4M_{\odot} and radius several 10 km, gravitational waves have frequency several 100 Hz and effective amplitude ∼5×10−22\sim 5 \times 10^{-22} at a distance of ∼100\sim 100 Mpc.Comment: 5 pages, 7 figures, accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019