11,465 research outputs found
Association between monosodium glutamate intake and sleep-disordered breathing among Chinese adults with normal body weight
ObjectiveTo assess whether monosodium glutamate (MSG) intake is associated with sleep-disordered breathing (SDB).MethodsData from 1227 Chinese subjects who participated in the Jiangsu Nutrition Study were analyzed. All the participants were examined at two time points (baseline in 2002 and follow-up in 2007). The MSG intake was assessed quantitatively in 2002 and a sleep questionnaire was used to assess snoring and to construct an SDB probability score in 2007. Those within the fifth quintile of the score (highest) were defined as having a high probability of SDB.ResultsThe MSG intake was positively associated with snoring and a high probability of SDB in participants who had a normal body weight but in those who were overweight. A comparison of the extreme quartiles of MSG intake in subjects with a body mass index lower than 23 kg/m² showed an odds ratio of 2.02 (95% confidence interval 1.02-4.00) for snoring and an odds ratio of 3.11 (95% confidence interval 1.10-8.84) for a high probability of SDB. There was a joint effect between MSG and overweight in relation to SDB.ConclusionThe intake of MSG may increase the risk of SDB in Chinese adults with a normal body weight.Zumin Shi, Gary A. Wittert, Baojun Yuan, Yue Dai, Tiffany K. Gill, Gang Hu, Robert Adams, Hui Zuo, Anne W. Taylo
Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective
In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a “plasmonic photosensitizer.” This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices
Signatures of Gate-Tunable Superconductivity in Trilayer Graphene/Boron Nitride Moir\'e Superlattice
Understanding the mechanism of high temperature (high Tc) superconductivity
is a central problem in condensed matter physics. It is often speculated that
high Tc superconductivity arises from a doped Mott insulator as described by
the Hubbard model. An exact solution of the Hubbard model, however, is
extremely challenging due to the strong electron-electron correlation.
Therefore, it is highly desirable to experimentally study a model Hubbard
system in which the unconventional superconductivity can be continuously tuned
by varying the Hubbard parameters. Here we report signatures of tunable
superconductivity in ABC-trilayer graphene (TLG) / boron nitride (hBN) moir\'e
superlattice. Unlike "magic angle" twisted bilayer graphene, theoretical
calculations show that under a vertical displacement field the ABC-TLG/hBN
heterostructure features an isolated flat valence miniband associated with a
Hubbard model on a triangular superlattice. Upon applying such a displacement
field we find experimentally that the ABC-TLG/hBN superlattice displays Mott
insulating states below 20 Kelvin at 1/4 and 1/2 fillings, corresponding to 1
and 2 holes per unit cell, respectively. Upon further cooling, signatures of
superconducting domes emerge below 1 kelvin for the electron- and hole-doped
sides of the 1/4 filling Mott state. The electronic behavior in the TLG/hBN
superlattice is expected to depend sensitively on the interplay between the
electron-electron interaction and the miniband bandwidth, which can be tuned
continuously with the displacement field D. By simply varying the D field, we
demonstrate transitions from the candidate superconductor to Mott insulator and
metallic phases. Our study shows that TLG/hBN heterostructures offer an
attractive model system to explore rich correlated behavior emerging in the
tunable triangular Hubbard model.Comment: 14 pages, 4 figure
Functional annotation of proteomic data from chicken heterophils and macrophages induced by carbon nanotube exposure
With the expanding applications of carbon nanotubes (CNT) in biomedicine and agriculture, questions about the toxicity and biocompatibility of CNT in humans and domestic animals are becoming matters of serious concern. This study used proteomic methods to profile gene expression in chicken macrophages and heterophils in response to CNT exposure. Two-dimensional gel electrophoresis identified 12 proteins in macrophages and 15 in heterophils, with differential expression patterns in response to CNT co-incubation (0, 1, 10, and 100 µg/mL of CNT for 6 h) (p < 0.05). Gene ontology analysis showed that most of the differentially expressed proteins are associated with protein interactions, cellular metabolic processes, and cell mobility, suggesting activation of innate immune functions. Western blot analysis with heat shock protein 70, high mobility group protein, and peptidylprolyl isomerase A confirmed the alterations of the profiled proteins. The functional annotations were further confirmed by effective cell migration, promoted interleukin-1β secretion, and more cell death in both macrophages and heterophils exposed to CNT (p < 0.05). In conclusion, results of this study suggest that CNT exposure affects protein expression, leading to activation of macrophages and heterophils, resulting in altered cytoskeleton remodeling, cell migration, and cytokine production, and thereby mediates tissue immune responses
Antigen-driven bystander effect accelerates epicutaneous sensitization with a new protein allergen
Exposure to protein allergen epicutaneously, inducing a Th2-dominant immune response, sensitizes the host to the development of atopic disease. Antigen-driven bystander effect demonstrates that polarized T cells could instruct naïve T cells to differentiate into T cells with similar phenotype. In this study, we aimed to determine the contribution of antigen-driven bystander effect on epicutaneous sensitization with a newly introduced protein allergen. BALB/c mice were immunized intraperitoneally with BSA emulsified in alum, known to induce a Th2 response, three weeks before given BSA and OVA epicutaneously. Lymph node cells from these mice restimulated with OVA secreted higher levels IL-4, IL-5 and IL-13 as compared with cells from mice without BSA immunization. In addition, BALB/c mice immunized subcutaneously with BSA emulsified in complete Freund's adjuvant, known to induce a Th1-predominant response, also induced higher Th1 as well as Th2 cytokine response when restimulated with OVA as compared with mice without immunization. We demonstrated that subcutaneous immunization with BSA in CFA induced Th2 as well as Th1 response. The threshold of epicutaneous sensitization to OVA was also reduced, possibly due to increased expressions of IL-4 and IL-10 in the draining lymph nodes during the early phase of sensitization. In conclusion, antigen-driven bystander effect, whether it is of Th1- or Th2-predominant nature, can accelerate epicutaneous sensitization by a newly introduced protein allergen. These results provide a possible explanation for mono- to poly-sensitization spread commonly observed in atopic children
Chip Implementation with a Combined Wireless Temperature Sensor and Reference Devices Based on the DZTC Principle
This paper presents a novel CMOS wireless temperature sensor design in order to improve the sensitivity and linearity of our previous work on such devices. Based on the principle of CMOS double zero temperature coefficient (DZTC) points, a combined device is first created at the chip level with two voltage references, one current reference, and one temperature sensor. It was successfully fabricated using the 0.35 μm CMOS process. According to the chip results in a wide temperature range from −20 °C to 120 °C, two voltage references can provide temperature-stable outputs of 823 mV and 1,265 mV with maximum deviations of 0.2 mV and 8.9 mV, respectively. The result for the current reference gives a measurement of 23.5 μA, with a maximum deviation of 1.2 μA. The measurements also show that the wireless temperature sensor has good sensitivity of 9.55 mV/°C and high linearity of 97%. The proposed temperature sensor has 4.15-times better sensitivity than the previous design. Moreover, to facilitate temperature data collection, standard wireless data transmission is chosen; therefore, an 8-bit successive-approximation-register (SAR) analog-to-digital converter (ADC) and a 433 MHz wireless transmitter are also integrated in this chip. Sensing data from different places can be collected remotely avoiding the need for complex wire lines
Recommended from our members
Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice
The Mott insulator is a central concept in strongly correlated physics and manifests when the repulsive Coulomb interaction between electrons dominates over their kinetic energy . Doping additional carriers into a Mott insulator can give rise to other correlated phenomena such as unusual magnetism and even high-temperature superconductivity . A tunable Mott insulator, where the competition between the Coulomb interaction and the kinetic energy can be varied in situ, can provide an invaluable model system for the study of Mott physics. Here we report the possible realization of such a tunable Mott insulator in a trilayer graphene heterostructure with a moiré superlattice. The combination of the cubic energy dispersion in ABC-stacked trilayer graphene and the narrow electronic minibands induced by the moiré potential leads to the observation of insulating states at the predicted band fillings for the Mott insulator. Moreover, the insulating states in the heterostructure can be tuned: the bandgap can be modulated by a vertical electrical field, and at the same time the electron doping can be modified by a gate to fill the band from one insulating state to another. This opens up exciting opportunities to explore strongly correlated phenomena in two-dimensional moiré superlattice heterostructures. 1,2 2,3 4–8 9–1
Evidence of Gate-Tunable Mott Insulator in Trilayer Graphene-Boron Nitride Moir\'e Superlattice
Mott insulator plays a central role in strongly correlated physics, where the
repulsive Coulomb interaction dominates over the electron kinetic energy and
leads to insulating states with one electron occupying each unit cell. Doped
Mott insulator is often described by the Hubbard model3, which can give rise to
other correlated phenomena such as unusual magnetism and even high-temperature
superconductivity. A tunable Mott insulator, where the competition between the
Coulomb interaction and the kinetic energy can be varied in situ, can provide
an invaluable model system for the study of Mott physics. Here we report the
realization of such a tunable Mott insulator in the ABC trilayer graphene (TLG)
and hexagonal boron nitride (hBN) heterostructure with a moir\'e superlattice.
Unlike massless Dirac electrons in monolayer graphene, electrons in pristine
ABC TLG are characterized by quartic energy dispersion and large effective mass
that are conducive for strongly correlated phenomena. The moir\'e superlattice
in TLG/hBN heterostructures leads to narrow electronic minibands that are gate
tunable. Each filled miniband contains 4 electrons in one moir\'e lattice site
due to the spin and valley degeneracy of graphene. The Mott insulator states
emerge at 1/4 and 1/2 fillings, corresponding to one electron and two electrons
per site, respectively. Moreover, the Mott states in the ABC TLG/hBN
heterostructure exhibit unprecedented tunability: the Mott gap can be modulated
in situ by a vertical electrical field, and at the meantime, the electron
doping can be gate-tuned to fill the band from one Mott insulating state to
another. Our observation of a tunable Mott insulator opens up exciting
opportunities to explore novel strongly correlated phenomena in two-dimensional
moir\'e superlattice heterostructures.Comment: 11 pages, 4 figure
- …