38,362 research outputs found

    SU(4) Theory for Spin Systems with Orbital Degeneracy

    Full text link
    The isotropic limit of spin systems with orbital degeneracy is shown to have global SU(4) symmetry. On many 2D lattices, the ground state does not posses long range order, which may explain the observed spin liquid properties of LiNiO2LiNiO_2. In the SU(4) Neel ordered state, spin-spin correlations can be antiferromagneitc between two neighboring sites with parallel magnetic moments.Comment: 11 pages, 2 figures. submitted to PR

    A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers

    Get PDF
    This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an on-line infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system

    Mott Relation for Anomalous Hall and Nernst effects in Ga1-xMnxAs Ferromagnetic Semiconductors

    Full text link
    The Mott relation between the electrical and thermoelectric transport coefficients normally holds for phenomena involving scattering. However, the anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit interaction. In this work, we have simultaneously measured AHE and the anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films, and observed an exceptionally large ANE at zero magnetic field. We further show that AHE and ANE share a common origin and demonstrate the validity of the Mott relation for the anomalous transport phenomena

    Temperature dependence of the conductivity of the electronic crystal

    Full text link
    We study the temperature dependence of the conductivity of the 2D electronic solid. In realistic samples, a domain structure forms in the solid and each domain randomly orients in the absence of the in-plane field. At higher temperature, the electron transport is governed by thermal activation form of σxx(T)∝e−Δ0/kBT\sigma_{xx}(T)\propto e^{-\Delta_0/k_BT}. The impurities will localize the electron states along the edges of the crystal domains. At sufficient low temperature, another transport mechanism called Mott's variable range hopping mechanism, similar to that in a disorder insulator takes effect. We show that as the temperature decreases, a crossover from the fixed range hopping of the transport to the variable range hopping of transport in the 2D electron system may be experimentally observed.Comment: 4 pages,1 figure

    Self-consistent tilted-axis-cranking study of triaxial strongly deformed bands in 158^{158}Er at ultrahigh spin

    Full text link
    Stimulated by recent experimental discoveries, triaxial strongly deformed (TSD) states in 158^{158}Er at ultrahigh spins have been studied by means of the Skyrme-Hartree-Fock model and the tilted-axis-cranking method. Restricting the rotational axis to one of the principal axes -- as done in previous cranking calculations -- two well-defined TSD minima in the total Routhian surface are found for a given configuration: one with positive and another with negative triaxial deformation Îł\gamma. By allowing the rotational axis to change direction, the higher-energy minimum is shown to be a saddle point. This resolves the long-standing question of the physical interpretation of the two triaxial minima at a very similar quadrupole shape obtained in the principal axis cranking approach. Several TSD configurations have been predicted, including a highly deformed band expected to cross lesser elongated TSD bands at the highest spins. Its transitional quadrupole moment Qt≈10.5Q_t \approx 10.5\,eb is close to the measured value of ∌\sim11\,eb; hence, it is a candidate for the structure observed in experiment.Comment: 5 pages, 5 figure

    Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods

    Get PDF
    The water repellency and self-cleaning ability of many biological surfaces has inspired many fundamental and practical studies related to the development of synthetic superhydrophobic surfaces. However, the investigation of such substrates made of biodegradable polymers has been scarce. Simple approaches based on a single step, performed at room temperature (and pressure), were implemented to obtain superhydrophobic poly(L-lactic acid) (PLLA) surfaces via phase inversion-based methods, without addition of low-surface-energy compounds. Water contact angles above 150◩ were obtained using some processing conditions. In such cases scanning electronic microscopy micrographs of such surfaces revealed a clear rough texture composed by leafy clusters with micro-nano binary structures. Such materials could be used in specific environmental and biomedical applications, namely in implantable materials or in antibacterial or antithrombogenic surfaces

    Frequency-domain transient analysis of multitime partial differential equation systems

    Get PDF
    Multitime partial differential equations (MPDEs) provide an efficient method to simulate circuits with widely separated rates of inputs. This paper proposes a fast and accurate frequency-domain multitime transient analysis method for MPDE systems, which fills in the gap for the lack of general frequency-domain solver for MPDE systems. A block-pulse function-based multidimensional inverse Laplace transform strategy is adopted. The method can be applied to discrete input systems. Numerical examples then confirm its superior accuracy, under similar efficiency, over time-domain solvers. © 2011 IEEE.published_or_final_versionThe 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip (VLSI-SoC), Hong Kong, 3-5 October 2011. In IFIP International Conference on Very Large Scale Integration Proceedings, 2011, p. 160-16

    Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi IPN beads

    Get PDF
    A series of semi-interpenetrating, polymer network (semi-IPN), hydrogel beads, composed of calcium alginate (Ca-alginate) and poly(N-isopropylacrylamide) (PNIPAAM), were prepared for a pH/temperature-sensitive drug delivery study. The equilibrium swelling showed the independent pH- and thermo- responsive nature of the developed materials. At pHŒ2.1, the release amount of indomethacin incorporated into these beads was about 10% within 400 min, while this value approached to 95% at pHŒ7.4. The release rate of the drug was higher at 37 8Cthan that at 25 8C and increased slightly with increasing PNIPAAM content. These results suggest that the Caalginate/ PNIPAAM beads have the potential to be used as an effective pH/temperature sustainable delivery system of bioactive agents
    • 

    corecore