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Abstract—Multitime partial differential equations (MPDEs)
provide an efficient method to simulate circuits with widely
separated rates of inputs. This paper proposes a fast and
accurate frequency-domain multitime transient analysis method
for MPDE systems, which fills in the gap for the lack of
general frequency-domain solver for MPDE systems. A block-
pulse function-based multidimensional inverse Laplace transform
strategy is adopted. The method can be applied to discrete input
systems. Numerical examples then confirm its superior accuracy,
under similar efficiency, over time-domain solvers.

I. INTRODUCTION

In the simulation of RF, mixed-signal and some analog
circuits, the input excitation might contain several widely sep-
arate components, e.g., the switched-capacitor filters, voltage-
controlled oscillators, mixers, etc. Time-domain analysis of
such (often nonlinear) circuits can be very time consuming,
since the time step should be small enough to respond to
higher frequency (fast) components, while the overall time
span should be long enough to capture the slow-varying com-
ponents. This results in a huge number of time steps used in
the time-domain analysis. To overcome this, multitime partial
differential equation (MPDE) [1] is proposed. Specifically,
different components of input excitation are separated into
different time variables. The response of an MPDE system is
in a multidimensional time domain. These time variables are
independent and have their own ranges and scales, so the over-
all time steps can be minimized which provides large speedup
in simulation. However, existing numerical MPDE solvers
are time-domain or mixed frequency-time domain steady-state
solvers [1], [2] subject to periodic boundary conditions, and
could not be applied to transient analysis.

On the other hand, block-pulse function (BPF) has been
used in numerical multidimensional inversion Laplace trans-
forms (MILT) for decades [3]–[5]. The operational matrices
in the block-pulse domain are analogous to certain operations
in the Laplace and time domains [5]. However, this method
can only be used to deal with closed-form input expressions
while in most cases the inputs are arbitrary.

In this paper, we propose a purely frequency-domain method
for transient analysis of (possibly nonlinear) MPDE systems.
The input signal could be either a function of multiple times
or discrete samples. First, a series of multivariable frequency-
domain linear time-invariant (LTI) systems is obtained from

the original MPDEs via Volterra series. Then, MILT is iter-
atively applied on each order of frequency response to get
the multivariable time-domain response. The accuracy of the
algorithm is demonstrated by numerical examples.

II. BACKGROUND

A. MPDE

For simplicity, we consider a single-input single-output
(SISO) system with zero initial value. The differential alge-
braic equation (DAE) of a time-invariant system is

d

dt
(q (x(t))) = f (x(t)) + u(t), (1)

where x(t) is a scalar state variable of node voltage (such
scalar assumption is made for the ease of presentation, exten-
sion to vector state variables can trivially be derived), f and
q are the nonlinear functions related to nonlinear conductance
and capacitance, u is the current input.

If the input signal contains r widely separate components,
the variables often can be expressed by functions of multitime
variables [1], [6], [7]. Then, the input and output signals u and
x could be represented by û(t1, . . . , tr) and x̂(t1, . . . , tr). The
original DAE system is re-expressed as an MPDE system:

∂q(x̂)

∂t1
+ · · ·+ ∂q(x̂)

∂tr
= f(x̂) + û(t1, . . . , tr). (2)

Once the multitime domain response x̂(t1, . . . , tr) is obtained,
the transient result is restored by x(t) = x̂(t, . . . , t).

B. BPF

For a given time span [0, T ) and the number of time-steps
m, block-pulse functions (BPFs) are defined as [3]

ϕi(t) =

{
1, ih ≤ t < (i+ 1)h
0, otherwise , i = 0, · · · ,m−1 (3)

where h is the time interval between steps. A time-domain
function f(t) defined in [0, T ) can be approximated by

f(t) =
m−1∑
i=0

fiϕi(t) = fT
(m)ϕ(m)(t), (4)

where fi = 1
h

∫ (i+1)h

ih
f(t)dt, f(m) and ϕ(m)(t) stand for

[f0, f1, . . . , fm−1]
T and [ϕ0(t), ϕ1(t), . . . , ϕm−1(t)]

T , respec-
tively. From (4), a function f(t) can be represented if its
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coefficients f(m) is known. The integration of BPFs can be
represented by an integral operator matrix:∫ t

0

ϕ(m)(τ)dτ = H(m)ϕ(m)(t), t ∈ [0, T ), (5)

where H(m) = h
2

(
I +Q(m)

) (
I −Q(m)

)−1, and Q(m) ∈
Rm×m is a nilpotent matrix with all ones on its super-
diagonal [3].

Similarly, it can be proven that the differential opera-
tional matrix is the inversion of Q(m), namely, D(m) =
2
h

(
I −Q(m)

) (
I +Q(m)

)−1. Therefore, the derivative of a
function f(t) can now be computed by fT

(m)D(m)ϕ(m)(t).

C. Numerical Inverse Laplace Transform

To calculate the inverse Laplace transform of F (s), we first
decompose it into F (s) = F̃ (s) 1s . The inverse Laplace of 1

s
is the step function u(t), which can be represented as u(t) =
[1, . . . , 1]ϕ(m)(t). Taking Laplace transform, we have 1

s =
[1, . . . , 1]Φ(m)(s), where Φ(m)(s) is the Laplace transform
of ϕ(m)(t). Then F (s) is converted to

F (s) = [1, . . . , 1]
(
F̃ (s)Φ(m)(s)

)
. (6)

In (6), F̃ (s) can be interpreted an operator on Φ(m)(s). The
operational matrix can be obtained by replacing s with D(m).
For a rational function F (s), it can be calculated by:

1) Take a bilinear transform s = 2
h

1−q
1+q

on F̃ (s).
2) Take a long division up to qm−1 term and obtain

F̃ (s)|
s= 2

h
1−q
1+q

= c̃0 + c̃1q + · · ·+ c̃m−1q
m−1. (7)

3) Replace q by Q(m) and obtain the operator F(m) = c̃0I +
c̃1qQ(m) + · · ·+ c̃m−1Q

m−1
(m) .

Therefore, F (s) = [1, 1, . . . , 1]F(m)Φ(m)(s) and its time-
domain response is f(t) = fT

(m)ϕ(m)(t) with

f(m) = FT
(m)[1, 1, . . . , 1]T = [f0, f1, . . . , fm−1]

T , (8)

where fi =
∑i

j=0 c̃j .
When extending to high dimensions, similarly, if the time-

domain response is defined in ti ∈ [0, Ti), i = 1, 2, . . . , r,
the procedure can be summarized as:

1) Decompose F (s1, s2, . . . , sr) into
F (s1, s2, . . . , sr) = F̃ (s1, s2, . . . , sr)

1
s1s2···sr

.
2) Apply multidimensional bilinear transform on

F̃ (s1, s2, . . . , sr):
si =

2
hi

1−qi
1+qi

, hi =
Ti
mi

, i = 1, 2, . . . , r.
3) Apply long division on F̃ (q1, q2, . . . , qr) to obtain the

coefficients of the expansion:

F̃ (q1, q2, . . . , qr) =

m1−1∑
i1=0

· · ·
mr−1∑
ir=0

c̃i1, ..., irq
i1
1 · · · qirr . (9)

4) Finally, the multitime domain response is calculated by

fi1, ..., ir =

i1∑
j1=0

· · ·
ir∑

jr=0

c̃j1, ..., jr . (10)

In [3], the input of a system cannot be arbitrary. The exact
expression of frequency-domain response F (s) must be given.

Therefore, the BPF-based method in [3] cannot be used to
solve systems with arbitrary inputs.

A direct method is proposed in Section IV-A for systems
with arbitrary numerical inputs. Thus, the BPF-based inverse
Laplace transform can deal with not only exact expressions of
F (s), but also systems with arbitrary inputs.

III. FREQUENCY-DOMAIN REPRESENTATION OF MPDE
SYSTEMS

The SISO MPDE system (1) can be expanded around its
bias point x0 by Talyor series [8],

∂

∂t
(C1x̂+ C2x̂

2 + · · · )− (G1x̂+G2x̂
2 + · · · ) = û, (11)

where ∂
∂t denotes the operator

(
∂
∂t1

+ · · ·+ ∂
∂tr

)
, Gi, Ci ∈

R are the ith order nonlinear conductance and capacitance
defined by Gi =

1
i!

∂if
∂xi

∣∣∣
x=x0

, Ci =
1
i!

∂iq
∂xi

∣∣∣
x=x0

.

On the other hand, according to Volterra series theory, the
response x̂ can be represented by the sum of the responses at
each order

x̂(t1, . . . , tr) =
∞∑

n=1

xn(t1, . . . , tr), (12)

where xi denotes the ith-order response of the MPDE system.
Each order of input/output relationship can be obtained by the
Variational Equation Approach [9, Chapter 3]. For instance,
the first three orders of response in (11) are given by

∂

∂t
(C1x1)−G1x1 = û, (13)

∂

∂t
(C1x2)−G1x2 = − ∂

∂t
(C2x

2
1) +G2x

2
1, (14)

∂

∂t
(C1x3)−G1x3 = − ∂

∂t
(C3x

3
1 +2C2x1x2) +G3x

3
1 +2G2x1x2.

(15)

Equations (13)-(15) can be regarded as LTI systems by
assuming the right hand side of the equations are the inputs.
Thus the responses are the solutions to the recursive LTI
systems. The right hand side of each equation can be defined
as the equivalent input, say, ûi, which can be calculated with
x1, . . . , xi−1 and û. Then, the responses become

∂

∂t
(C1xi)−G1xi = ûi, i = 1, 2, . . . (16)

Applying multidimensional Laplace transform on both sides
of (16) will give the multivariable frequency-domain repre-
sentation of each order,

Xi(s1, . . . , sm) =
L(r){ûi}

C1(s1 + · · ·+ sr)−G1
, i = 1, 2, . . . , (17)

where Xi is the frequency-domain response of xi, L(r){·}
denotes the r-dimension Laplace transform operator.

Therefore, the representation of each order of frequency-
domain response is obtained. Here, L(r){û1} = L(r){û} can
be in function of s1, . . . , sr. For i > 1, L(r){ûi} are all in the
form of a “pseudo Laplace transform” on discrete numerical
input of ûi.
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IV. MULTIDIMENSIONAL INVERSE LAPLACE TRANSFORM

In this section, a method of numerical MILT of (17) will
be given. First, the inverse Laplace transform with numerical
input will be introduced. Then, the procedure of multivariable
frequency-domain MPDE solver is summarized.

A. Inverse Laplace Transform with Numerical Input

In one-dimensional inverse Laplace transform, the fre-
quency response F (s) is split into product of F̃ (s) and 1

s .
In (6), F̃ (s) is interpreted as operator on Φ(m)(s) with step
function input. Thus, the results (8) can be regarded as the
convolution of the “discrete” step function [1, 1, . . . , 1] and
the “discrete” LTI system F̃ (s) which is represented by the
coefficients c̃i, i = 1, . . . , m.

In other words, the step function is an artificial “input” to
the artificial “system” F̃ (s). If the discrete numerical input
u = [u0, u1, . . . , um−1]

T is given, there is no need to apply a
bilinear transform and a long division on the artificial “system”
F̃ (s). These steps can be applied on the real system F (s) to
obtained a new series of coefficients, say, ci, i = 1, . . . , m.
Then the results (8) can be rewritten as

f(m) = FT
(m)[u0, u1, . . . , um−1]

T = [f0, f1, . . . , fm−1]
T ,
(18)

where fi =
∑i

j=0 ui−jcj .
The conclusion can be generalized to MILT as well. If we

take the multivariate bilinear transform and long division on
the original system F (s1, s2, . . . , sr) to obtained a new se-
ries of coefficients cj1, ..., jr , ji = 1, . . . , mi; i = 1, . . . , r,
the results (10) will become

fi1, ..., ir =

i1∑
j1=0

· · ·
ir∑

jr=0

ui1−j1, ...,ir−jrcj1, ...,jr , (19)

where uj1, ..., jr is the multidimensional discrete numerical
input. Consequently, the LTI systems (17) with either closed-
form or discrete inputs can be solved by MILT.

B. Frequency-Domain MPDE Solver Algorithm

The procedure of our multidimensional frequency-domain
MPDE solver is summarized in Algorithm 1.

Algorithm 1: Frequency-domain MPDE Solver
Input: MPDE system
Output: Multitime domain response fi1, ..., ir

1: Expand the system by Volterra series and truncate to kth order;
{usually k ≤ 3}

2: for j = 1 to k do
3: Calculate closed-form representation or discrete numerical

values of input ûj ;
4: Apply bilinear transform and polynomial long division to

obtain the coefficients for frequency-domain response Xj ;
5: Use the coefficients and discrete input values to obtain the

jth-order time-domain response x
(j)
i1, ..., ir

;
6: end for
7: fi1, ..., ir =

∑k
j=1 x

(j)
i1, ..., ir

The most expensive step in the algorithm is step 5, wherein
multidimensional convolutions (19) are calculated. The com-

putational complexity of (19) is O(m2
1m

2
2 · · ·m2

r), where mi

is the number of time-steps observed in the ith time scale.
Since the time-domain methods for MPDE systems are all

steady-state solvers, we apply the Multivariate Finite Differ-
ence Time Domain (MFDTD) method [1] on the time-domain
transient analysis of MPDE systems to compare the results
against our frequency-domain solver. The Newton-Raphson
method is used in roots finding for nonlinear equations. The
numerical results are shown in Section V.

V. NUMERICAL EXAMPLES

A. Example 1: A Comparator Circuit

This example is modified from the example in [1]. A two-
tone input passes a comparator followed by an RC filter, as
shown in Fig. 1.

R = 100

C = 10nF

1 2( , )b t t 1 2( , )y t t
1 2( , )x t t

Fig. 1. A comparator circuit with RC.

Its input is a two-tone quasi-periodic signal defined by

b(t1, t2) = sin(
2π

T1
t1) sin(

2π

T2
t2), T1 = 0.1ms, T2 = 0.01ms.

(20)
The current output of the comparator is described by

y(t1, t2) = comp (b(t1, t2)) , comp(x) =
{

1 if x > 0
0 otherwise .

The example can be regarded as a multitime LTI system
with nonlinear input. Of course, the response can be calculated
with numerical discrete inputs by a 2-D convolution in (19),
it also can be solved by closed-form representation. The time-
domain representation of y(t1, t2) is

y(t1, t2) = comp
(
sin(

2π

T1
t1) sin(

2π

T2
t2)

)
.

Take 2-D Laplace transform of y(t1, t2), its frequency-domain
representation Y (s1, s2) reads

Y (s1, s2) =
1 + e−(T1s1+T2s2)/2

s1s2(1 + e−T1s1/2)(1 + e−T2s2/2)
.

Therefore, the frequency-domain voltage response X(s1, s2)
can be obtained by (17):

X(s1, s2) =
Y (s1, s2)

C(s1 + s2) + 1/R
.

By applying our direct coefficient method, the coefficients of
qi11 qi22 can be solved. Finally, the time-domain response of the
system is obtained.

The time-domain response in the time span [0, T1)×[0, T2)
is shown in Fig. 2, with time-steps m1 = 200, m2 = 100 in
the time scales. The exact response of the circuit can be found
along the t1 = t2 axis. The exact solution in the time interval
[0, T1) is displayed in Fig. 3, together with the results of
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MFDTD method with different time-steps. The reference line
in Fig. 3 is the original system solved by ODE solver. Further
benchmarks are given in Table I.

0
0.2

0.4
0.6

0.8
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x 10
−50

0.5

1

x 10
−4

0

50

100

t
1
  (s)t

2
  (s)

x
  

(V
)

Fig. 2. Multitime domain response of Example 1.
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Fig. 3. Time-domain response of Example 1.

B. Example 2: A Nonlinear Capacitor RC Filter

This example is a RC low-pass filter with nonlinear capac-
itor. The parameters are defined by

R = 100Ω, C = 1 + 0.128VC + 0.068V 2
CµF,

where R and C are the resistance and capacitance of the filter,
VC is the voltage applied on the capacitor. The excitation is
the same quasi-periodic signal as in (20), m1 = m2 = 100
time steps in both directions.

We expand the system to the 3rd-order Volterra represen-
tation. Again, the results in the time interval [0, T1) are
displayed in Fig. 4.

0 0.2 0.4 0.6 0.8 1

x 10
−4

−1

−0.5

0

0.5

t  (s)

x
  

 (
V

)

 

 

Reference (ODE)

MILT (100,100)

MFDTD (100,100)

MFDTD (1000,1000)

Fig. 4. Time-domain response of Example 2.

The comparison of the MFDTD method and the MILT
is listed in Table I. Both examples show that, though the
time-domain transient solver is faster than the frequency-
domain solver with the same time-steps, the result of MILT is
more accurate. When increasing the number of time-steps in
MFDTD, it will consume more CPU times to get the solutions
with similar accuracy. In Example 2, though only first three
orders of Volterra series are preserved, the accuracy of the
result is even better than the result of MFDTD method with
much more time-steps.

TABLE I
COMPARISON OF MILT AND MFDTD METHODS
(INTEL I5 750@2.67GHZ, 4GB, WINDOWS 7)

Time-steps CPU
times (s)

Relative
error (%)

Example 1

MILT (200, 100) 2.60 2.98
MFDTD 1 (200, 100) 0.16 4.52
MFDTD 2 (1000, 500) 4.14 3.13

Example 2

MILT (100, 100) 1.95 0.88
MFDTD 1 (100, 100) 0.16 7.32
MFDTD 2 (1000, 1000) 13.2 1.45

VI. CONCLUSION

An MILT-based algorithm has been proposed for the multi-
dimensional transient analysis of MPDE systems. This method
can deal with nonlinear systems with either closed-form or
discrete numerical inputs. Numerical examples have demon-
strated the proposed algorithm produces fast and accurate tran-
sient solutions for both linear and nonlinear MPDE systems.
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