2,422 research outputs found

    Quantum Communications with Compressed Decoherence Using Bright Squeezed Light

    Full text link
    We propose a scheme for long-distance distribution of quantum entanglement in which the entanglement between qubits at intermediate stations of the channel is established by using bright light pulses in squeezed states coupled to the qubits in cavities with a weak dispersive interaction. The fidelity of the entanglement between qubits at the neighbor stations (10 km apart from each other) obtained by postselection through the balanced homodyne detection of 7 dB squeezed pulses can reach F=0.99 without using entanglement purification, at same time, the probability of successful generation of entanglement is 0.34.Comment: 4 pages, 2 figure

    Impediments to eye transplantation: Ocular viability following optic-nerve transection or enucleation

    Get PDF
    Maintenance of ocular viability is one of the major impediments to successful whole-eye transplantation. This review provides a comprehensive understanding of the current literature to help guide future studies in order to overcome this hurdle. A systematic multistage review of published literature was performed. Three specific questions were addressed: (1) Is recovery of visual function following eye transplantation greater in cold-blooded vertebrates when compared with mammals? (2) Is outer retina function following enucleation and reperfusion improved compared with enucleation alone? (3) Following optic-nerve transection, is there a correlation between retinal ganglion cell (RGC) survival and either time after transection or proximity of the transection to the globe? In a majority of the studies performed in the literature, recovery of visual function can occur after whole-eye transplantation in cold-blooded vertebrates. Following enucleation (and reperfusion), outer retinal function is maintained from 4 to 9 h. RGC survival following optic-nerve transection is inversely related to both the time since transection and the proximity of transection to the globe. Lastly, neurotrophins can increase RGC survival following optic-nerve transection. This review of the literature suggests that the use of a donor eye is feasible for whole-eye transplantation.published_or_final_versio

    A new concept for the combination of optical interferometers and high-resolution spectrographs

    Full text link
    The combination of high spatial and spectral resolution in optical astronomy enables new observational approaches to many open problems in stellar and circumstellar astrophysics. However, constructing a high-resolution spectrograph for an interferometer is a costly and time-intensive undertaking. Our aim is to show that, by coupling existing high-resolution spectrographs to existing interferometers, one could observe in the domain of high spectral and spatial resolution, and avoid the construction of a new complex and expensive instrument. We investigate in this article the different challenges which arise from combining an interferometer with a high-resolution spectrograph. The requirements for the different sub-systems are determined, with special attention given to the problems of fringe tracking and dispersion. A concept study for the combination of the VLTI (Very Large Telescope Interferometer) with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other specific instrument pairings are discussed. We show that the proposed combination of an interferometer with a high-resolution spectrograph is indeed feasible with current technology, for a fraction of the cost of building a whole new spectrograph. The impact on the existing instruments and their ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio

    Common variants in FOXP1 are associated with generalized vitiligo

    Get PDF
    In a recent genome-wide association study of generalized vitiligo, we identified ten confirmed susceptibility loci. By testing additional loci that showed suggestive association in the genome-wide study, using two replication cohorts of European descent, we observed replicated association of generalized vitiligo with variants at 3p13 encompassing FOXP1 (rs17008723, combined P = 1.04 × 10−8) and with variants at 6q27 encompassing CCR6 (rs6902119, combined P = 3.94 × 10−7)

    A Bayesian method for evaluating and discovering disease loci associations

    Get PDF
    Background: A genome-wide association study (GWAS) typically involves examining representative SNPs in individuals from some population. A GWAS data set can concern a million SNPs and may soon concern billions. Researchers investigate the association of each SNP individually with a disease, and it is becoming increasingly commonplace to also analyze multi-SNP associations. Techniques for handling so many hypotheses include the Bonferroni correction and recently developed Bayesian methods. These methods can encounter problems. Most importantly, they are not applicable to a complex multi-locus hypothesis which has several competing hypotheses rather than only a null hypothesis. A method that computes the posterior probability of complex hypotheses is a pressing need. Methodology/Findings: We introduce the Bayesian network posterior probability (BNPP) method which addresses the difficulties. The method represents the relationship between a disease and SNPs using a directed acyclic graph (DAG) model, and computes the likelihood of such models using a Bayesian network scoring criterion. The posterior probability of a hypothesis is computed based on the likelihoods of all competing hypotheses. The BNPP can not only be used to evaluate a hypothesis that has previously been discovered or suspected, but also to discover new disease loci associations. The results of experiments using simulated and real data sets are presented. Our results concerning simulated data sets indicate that the BNPP exhibits both better evaluation and discovery performance than does a p-value based method. For the real data sets, previous findings in the literature are confirmed and additional findings are found. Conclusions/Significance: We conclude that the BNPP resolves a pressing problem by providing a way to compute the posterior probability of complex multi-locus hypotheses. A researcher can use the BNPP to determine the expected utility of investigating a hypothesis further. Furthermore, we conclude that the BNPP is a promising method for discovering disease loci associations. © 2011 Jiang et al

    Left-handed color-sextet diquark in Kaon system

    Get PDF
    We investigate whether a color-sextet scalar diquark (H6{\bf H}_6) coupling to the left-handed quarks contributes to the ΔS=2\Delta S=2 process. It is found that the box diagrams mediated by WW and H6{\bf H}_6 bosons have no contributions to ΔS=2\Delta S=2 when the limit of mt=0m_t=0 is used, and the flavor mixing matrices for diagonalizing quark mass matrices are introduced at the same time. When the heavy top-quark mass effects are taken into account, it is found that in addition to the W−H6W-{\bf H}_6 box diagrams significantly contributing to ΔS=2\Delta S=2, their effects can be as large as those from the H6−H6{\bf H}_6-{\bf H}_6 box diagrams. Using the parameters that are constrained by the K0−Kˉ0K^0-\bar K^0 mixing parameter ΔMK\Delta M_K and the Kaon indirect CP violation ϵK\epsilon_K, we find that the left-handed color-sextet diquark can lead to the Kaon direct CP violation being Re(ϵ′/ϵ)∼0.4×10−3Re(\epsilon'/\epsilon) \sim 0.4 \times 10^{-3}. In the chosen scheme, although the diquark contribution to KL→π0ννˉK_L\to \pi^0 \nu \bar\nu is small, the branching ratio of K+→π+ννˉK^+ \to \pi^+ \nu \bar\nu can reach the current experimental upper bound.Comment: 22 pages, 6 figure

    Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity

    Get PDF
    INTRODUCTION: Increased mammographic density is a strong risk factor for breast cancer. The reasons for this are not clear; two obvious possibilities are increased epithelial cell proliferation in mammographically dense areas and increased breast epithelium in women with mammographically dense breasts. We addressed this question by studying the number of epithelial cells in terminal duct lobular units (TDLUs) and in ducts, and their proliferation rates, as they related to local breast densities defined histologically within individual women. METHOD: We studied deep breast tissue away from subcutaneous fat obtained from 12 healthy women undergoing reduction mammoplasty. A slide from each specimen was stained with the cell-proliferation marker MIB1. Each slide was divided into (sets of) areas of low, medium and high density of connective tissue (CT; highly correlated with mammographic densities). Within each of the areas, the numbers of epithelial cells in TDLUs and ducts, and the numbers MIB1 positive, were counted. RESULTS: The relative concentration (RC) of epithelial cells in high compared with low CT density areas was 12.3 (95% confidence interval (CI) 10.9 to 13.8) in TDLUs and 34.1 (95% CI 26.9 to 43.2) in ducts. There was a much smaller difference between medium and low CT density areas: RC = 1.4 (95% CI 1.2 to 1.6) in TDLUs and 1.9 (95% CI 1.5 to 2.3) in ducts. The relative mitotic rate (RMR; MIB1 positive) of epithelial cells in high compared with low CT density areas was 0.59 (95% CI 0.53 to 0.66) in TDLUs and 0.65 (95% CI 0.53 to 0.79) in ducts; the figures for the comparison of medium with low CT density areas were 0.58 (95% CI 0.48 to 0.70) in TDLUs and 0.66 (95% CI 0.44 to 0.97) in ducts. CONCLUSION: Breast epithelial cells are overwhelmingly concentrated in high CT density areas. Their proliferation rate in areas of high and medium CT density is lower than that in low CT density areas. The increased breast cancer risk associated with increased mammographic densities may simply be a reflection of increased epithelial cell numbers. Why epithelium is concentrated in high CT density areas remains to be explained

    Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential

    Get PDF
    BACKGROUND: The acceptance of microarray technology in regulatory decision-making is being challenged by the existence of various platforms and data analysis methods. A recent report (E. Marshall, Science, 306, 630–631, 2004), by extensively citing the study of Tan et al. (Nucleic Acids Res., 31, 5676–5684, 2003), portrays a disturbingly negative picture of the cross-platform comparability, and, hence, the reliability of microarray technology. RESULTS: We reanalyzed Tan's dataset and found that the intra-platform consistency was low, indicating a problem in experimental procedures from which the dataset was generated. Furthermore, by using three gene selection methods (i.e., p-value ranking, fold-change ranking, and Significance Analysis of Microarrays (SAM)) on the same dataset we found that p-value ranking (the method emphasized by Tan et al.) results in much lower cross-platform concordance compared to fold-change ranking or SAM. Therefore, the low cross-platform concordance reported in Tan's study appears to be mainly due to a combination of low intra-platform consistency and a poor choice of data analysis procedures, instead of inherent technical differences among different platforms, as suggested by Tan et al. and Marshall. CONCLUSION: Our results illustrate the importance of establishing calibrated RNA samples and reference datasets to objectively assess the performance of different microarray platforms and the proficiency of individual laboratories as well as the merits of various data analysis procedures. Thus, we are progressively coordinating the MAQC project, a community-wide effort for microarray quality control
    • …
    corecore