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ABSTRACT
Maintenance of ocular viability is one of the major
impediments to successful whole-eye transplantation.
This review provides a comprehensive understanding of
the current literature to help guide future studies in order
to overcome this hurdle. A systematic multistage review
of published literature was performed. Three specific
questions were addressed: (1) Is recovery of visual
function following eye transplantation greater in cold-
blooded vertebrates when compared with mammals? (2)
Is outer retina function following enucleation and
reperfusion improved compared with enucleation alone?
(3) Following optic-nerve transection, is there a correlation
between retinal ganglion cell (RGC) survival and either
time after transection or proximity of the transection to
the globe? In a majority of the studies performed in the
literature, recovery of visual function can occur after
whole-eye transplantation in cold-blooded vertebrates.
Following enucleation (and reperfusion), outer retinal
function is maintained from 4 to 9 h. RGC survival
following optic-nerve transection is inversely related to
both the time since transection and the proximity of
transection to the globe. Lastly, neurotrophins can
increase RGC survival following optic-nerve transection.
This review of the literature suggests that the use of a
donor eye is feasible for whole-eye transplantation.

Approximately 37 million people worldwide suffer
from blindness, with up to 20% or 7.4 million
having vision of only light perception or less.1 2

Much of this irreversible blindness is due to age-
related diseases such as macular degeneration,
diabetic retinopathy and glaucoma,3–5 as well as
trauma and ocular tumours.6–8 The irreversible
nature of these diseases is a result of permanent
optic-nerve damage. Irreversibly damaged axons of
retinal ganglion cells (RGCs)—the output neurons
from the retina that pass through the optic nerve—
do not regain their function. Potentially, whole-eye
transplantation can provide a blind recipient with
viable RGCs capable of regeneration, as well as the
optical system necessary for forming a retinal
image.

In 1977, a 17-member advisory council for the
National Eye Institute (NEI) called for a ‘‘limited
and thoughtful laboratory effort’’ in the area of eye
transplantation. However, the council acknowl-
edged that ‘‘at present, any effort to transplant a
mammalian eye is doomed to failure by the
ganglion cell axon’s inability to withstand cutting,
by the difficulty of insuring adequate circulation of
blood to the transplanted eye during or shortly
after operation, and lastly by immune rejection of
foreign tissue.’’9

Here we provide a comprehensive understanding
of the current literature regarding ocular viability
of the donor eye. Throughout this review, ocular
viability will be defined in one of three ways:
capacity for visual recovery, maintenance of outer
retina function (measured using an electroretino-
gram (ERG)) or RGC survival. The following three
questions relating to ocular viability were
addressed: (1) Is recovery of visual function
following eye transplantation greater in cold-
blooded vertebrates when compared with mam-
mals? (2) Is outer retina function following
enucleation and reperfusion improved compared
with enucleation alone? (3) Following optic-nerve
transection, is there a correlation between RGC
survival and either time after transection or
proximity of the transection to the globe? To
answer these questions, we systematically
reviewed the published literature to determine
the outcome of whole-eye transplantation in
animals, outer retina function after enucleation
and RGC survival after optic-nerve transection.

LITERATURE SOURCES AND EVALUATION
Pertinent articles were identified through a multi-
stage systematic approach. In the first stage, a
computerised search of MEDLINE database
(National Library of Medicine, Bethesda,
Maryland) was performed. The search-terms
‘‘optic nerve regeneration,’’ ‘‘eye transplantation,’’
‘‘isolated perfused eye,’’ retinal ganglion cell
survival axotomy’’ and ‘‘circulatory revascularisa-
tion of the eye’’ from the Medical Subject Headings
(MeSH0 supplement to Index Medicus (National
Library of Medicine, Bethesda, Maryland) were
used for a broad search. This search produced 702
unique citations. Commercial internet search
engines were queried for additional unique refer-
ences. In the second stage, all abstracts were
carefully scanned to identify articles that pertained
to ocular viability. Whole copies of 153 articles
were obtained. Bibliographies of the retrieved
articles were manually searched for additional
articles. In the third stage, complete articles were
reviewed to identify those that discussed eye
transplantation, ocular viability, retinal function
in the isolated perfused eye or RGC survival
following optic-nerve transection. The search was
limited to English language articles.

Articles were grouped into three categories for
further data abstraction: (1) articles that described
in vivo whole-eye transplantation, (2) articles that
described in vivo and ex vivo whole-eye reperfusion
and (3) articles that described in vivo RGC survival
and factors that increase RGC survival. Data were
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abstracted from identified articles to determine ocular viability
in each of the above three categories and for factors that
improve ocular viability.

For evidence of visual function, only articles in which the eye
was completely enucleated and reimplanted were included.
Articles in which the optic nerve was transected but the eye was
not enucleated were excluded. We relied on each identified
article’s conclusion to assess evidence of visual function.
Outcome of whole-eye transplantation in cold-blooded verte-
brate was compared with outcome in mammals. In total, 17
articles regarding whole-eye transplantation in both cold-
blooded vertebrate and mammals satisfied our inclusion criteria.

For evidence of preserved outer retina function, only articles
that evaluated outer retina function (with ERG) at greater than
one time point were included. Articles, in which an enucleated
eye was perfused, but maintenance of ocular viability at greater
than one time point was not evaluated, were excluded. Articles
in which there was no attempt to evaluate retina function were
also excluded. In total, eight articles regarding ex vivo perfused
eyes satisfied our inclusion criteria.

For RGC survival, articles were divided into two categories
based upon the location of optic-nerve transection—intraorbital
or intracranial. Articles that evaluated RGC survival at (at least)
two of the following three time points were included: 1–3 days
post-transection, 10–15 days post-transection and 26–30 days
post-transection. Only articles in which complete optic-nerve
transection (one optic-nerve crush article was included) was
performed and in which quantification of RGC survival at more
than one time point was assessed were included. In total, 12
articles regarding survival of RGC after optic-nerve transection
satisfied our inclusion criteria.

Finally, articles that demonstrated factors that improved
RGC survival were included. The effect of the positive factors is
reported as the percentage difference of RGC survival between
the eye that was treated with the factor, and the eye that was
not treated. This percentage difference was calculated by
subtracting the percentage (of healthy control) of RGC survival
in the untreated eye from the percent (of healthy control) of
RGC survival in the treated eye. The result of this calculation
yielded the ‘‘percentage survival difference.’’ In total, 45 articles
regarding factors that increase RGC survival satisfied our
inclusion criteria.

A total of 82 articles were included in the study, and a total of
93 articles are referenced. A total of 60 articles were excluded
based on our exclusion criteria.

RESULTS
Whole-eye transplantation
In defining ocular viability as recovery of visual function
following transplantation, it is necessary to review attempts
at whole-eye transplantation, which date back to 1885 when a
rabbit eye was transplanted into a human orbit.10 Over the
subsequent 10 years, several attempts at mammalian eye
transplantation followed;10 11 however, by the early to mid
20th century, most of the attempts at eye transplantation were
performed in cold-blooded vertebrates, and much of our
knowledge is obtained from these studies. In total, we have
reviewed 17 articles regarding whole-eye transplantation.10–26

Figure 1 outlines eye transplantations performed from the years
1880 until 2000 (962 in total).

A total of seven articles describing 173 mammalian eye
transplantations were reviewed.10–13 15 17 18 Of the seven studies,
only two have demonstrated recovery of visual function.13 15 In
1925, Koppanyi and Baker reported the recovery of visual

function in three out of 25 rats in which autograft transplanta-
tion (excision and reimplantation) was performed.15 Doubts
have since been raised regarding the accuracy of the tests
Koppanyi used to demonstrate visual function and whether the
rats ever truly recovered vision.9 14 The only other study that
shows recovery of visual function in mammals was performed
by Freed and Wyatt in 1980.13 They demonstrated that
following transplantation of fetal eyes directly into the brains
of adult rats, surviving ocular tissue could be identified. Visual
evoked responses were positive in nine out of 10 rats in which
surviving ocular tissue was identified. Although some of the
remaining studies establish ‘‘success’’ in other capacities, no
visual function was recovered following transplantation.

We have reviewed a total of 10 articles,15 16 19–26 eight of which
describe 789 eye transplantations in cold-blooded verte-
brates.16 19–25 In the remaining two articles, recovery of visual
function was reported, but the number of experimental models
was not given.15 26 One of the eight articles describes 296
transplantations, but the specific number in which recovery of
visual function was tested is not given.23 In the remaining seven
articles,16 19–22 24 25 of the 493 transplantations that were
recorded, 180 were tested for visual recovery, and 95 demon-
strated recovery of visual function. Table 1 describes the 10
articles in greater detail.

Many more eye transplantations were performed in cold-
blooded vertebrate than in mammals. Furthermore, mainte-
nance of ocular viability was more successful in cold-blooded
vertebrates when compared with mammals.

Outer retina function after enucleation
In assessing ocular viability of the donor eye as it pertains to
whole-eye transplantation, one of the primary concerns is the
ability for the retina to maintain function following enuclea-
tion. Throughout this section, ocular viability will be defined as
maintenance of outer retina function following enucleation as
measured using ERG. An excellent model for assessing retina
function after enucleation ex vivo is the isolated, perfused eye
that was originally used in 1970.27 Even though this model was
employed prior to 1970, it was not for the purposes of assessing
retinal function.28 29 In this system, the eye is enucleated and
immediately (usually within less than 10 min) reperfused with
an artificial perfusate designed to maintain retina function for
as long as possible. In this review, a total of eight articles
describing outer retina function in a perfused eye are
reviewed.27 30–36

All eight of the articles regarding outer retina function in an
isolated perfused eye identified a period of time in which outer
retina function was maintained after enucleation and reperfu-
sion.27 30–36 Maintenance of outer retina function was deter-
mined by the presence of a stable ERG response as determined
by each individual study. Of the eight studies, seven used flash
ERG,27 30–33 35 36 and one used multifocal ERG (mfERG).34 Two of
the eight studies reported that without reperfusion, ERG
activity is greatly decreased or absent within 5 min after
enucleation.27 32 In the eight studies, the period in which outer
retina function was maintained following enucleation and
reperfusion ranged from 4 h to more than 9 h. Table 2 outlines
these eight studies in greater detail.

RGC survival following optic-nerve transection
The third area of importance regarding maintaining ocular
viability is RGC survival as assessed by histological analysis of
the retina following optic-nerve transection. Specifically, we
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evaluated the correlation between RGC survival and both time
after optic-nerve transection and distance of transection from
the globe. We also evaluated factors that increase RGC survival
after optic-nerve transection. In total, 12 articles describing
RGC survival after optic-nerve transection were reviewed.37–48

An additional 45 articles identifying factors that increase RGC
survival were reviewed.38 39 42 43 46 49–88

In nine of the 12 studies that evaluated RGC survival at the
above-mentioned time points, an intraorbital injury was
performed,38–40 42–46 48 in two studies, both an intraorbital and
intracranial injury was performed,37 47 and in one study, only an
intracranial injury was performed.41 The injuries were divided
into two categories—intraorbital injury (11 studies) and
intracranial injury (three studies).

The results of the studies using intraorbital injuries were as
follows: eight studies evaluated RGC survival at the 1–3 day
time point with survival ranging from 72 to 100%;37 40 42–46 48 11
studies evaluated RGC survival at the 10–15 day time point
with results ranging from 5.8 to 27%;37–40 42–48 and six studies
evaluated RGC survival at the 26–30 day time point with
results ranging from ‘‘negligible’’ to 7.5%.37–40 46 47

The results of the intracranial injuries were as follows: two
studies evaluated RGC survival at the 1–3 day time point with
survival ranging from 90 to 100%;37 41 four studies (three
articles) evaluated RGC survival at the 10–15 day time point
with results ranging from 57.4 to 68%;37 41 47 and four studies
(three articles) evaluated RGC survival at the 26–30 day time
point with results ranging from 49 to 71.4%.37 41 47 Table 3
outlines these studies in greater detail. An inverse relationship
between RGC survival following optic-nerve transection, and
both time after transection and proximity of transection to the
globe is clearly demonstrated.

A total of 45 articles that describe factors that increase
RGC survival after optic-nerve transection were
reviewed.38 39 42 43 46 49–88 In these articles, 31 individual factors,
six combined factors and 17 gene modifications are discussed. In
the 45 articles, some of the factors that are studied include
brain-derived neurotrophic factor (BDNF),39 61 68 74 76 78 85 ciliary
neurotrophic factor (CNTF),46 82 83 glial-derived neurotrophic
factor (GDNF),64 66 68 82 85 neurturin,68 nerve growth factor
(NGF)51 and many others. Tables 4–6 list the factors along
with details for each study.

DISCUSSION
Whole-eye transplantation may prove to be the ultimate
treatment for irreversible causes of blindness. The three main
impediments to transplanting a human eye are:9 89 maintenance
of donor eye viability, optic-nerve regeneration and restoration
of topographic organisation, and avoidance of immunological
rejection. We have systematically reviewed the first impediment
to eye transplantation, which is maintenance of donor eye
viability. Three measurable characteristics defining ocular
viability that are of particular importance to whole-eye
transplantation are recovery of visual function after eye
transplantation, outer retina function after enucleation, and
RGC survival after optic-nerve transection. The method in
which ocular viability was determined and defined was specific
to the individual factors and is clearly delineated in the
introduction of this article. Our review of the literature
concluded that recovery of visual function can occur after
whole-eye transplantation in cold-blooded vertebrates.
However, limited information is available regarding recovery
of visual function after whole-eye transplantation in mammals.
In mammals, following enucleation and reperfusion, outer
retinal function is maintained from 4 to 9 h. RGC survival
following optic-nerve transection is inversely related to both the

Figure 1 Timeline of whole-eye transplantations performed between
the years 1880 and 2000.

Table 1 Whole-eye transplantation in cold-blooded vertebrates

Animal No of eyes transplanted
No of eyes tested
for vision Method of testing

No of eyes that recovered
visual function Study

Bombinator (European toad) NR NR Skin colour (visual controlled) ‘‘Many’’ Koppany and Baker15

Salamander NR NR Behavioural response ‘‘Many’’ Stone and Ussher26

Salamander 82 6 Behavioural response All 6 Stone20

Salamander 296 NR Behavioural response ‘‘Many specimens’’ Stone and Cole23

Salamander 186 31 Behavioural response All 31 Stone et al25

Salamander 33 9 Behavioural response 6 of 9 Stone and Zaur24

Salamander 59 4 Behavioural response. NR

Frog 32 (16 animals) All (16 animals) Behavioural response 2 of 16 frogs Sperry19

Salamander 42 (21 animals) All (21 animals) Behavioural response 12 of 21 salamanders

Salamander 11 eyes 10 Behavioural response 7 of 10 Stone22

Salamander 26 (13 animals) 24 (12 animals) Behavioural response 9 of 12 salamanders Stone21

Salamander 22 22 Recovery of visual activated
skin camouflage

18 of 22 Pietsch and Schneider16

NR, not recorded.

Review

1136 Br J Ophthalmol 2009;93:1134–1140. doi:10.1136/bjo.2008.155267

 group.bmj.com on December 8, 2011 - Published by bjo.bmj.comDownloaded from 

http://bjo.bmj.com/
http://group.bmj.com/


time since transection and the proximity of transection to the
globe. Neurotrophins can increase RGC survival following
optic-nerve transection. Taken together, these findings suggest
the feasibility of using the donor eye for possible whole-eye
transplantation.

One of the primary concerns regarding maintenance of ocular
viability is the ability to preserve or recover retinal function of
the donor eye following enucleation. Of particular concern are
the photoreceptor cells that are responsible for absorbing the
light and initiating signal transduction to the higher visual
centres. An ideal system for assessing this function is the
isolated perfused eye.27 Following enucleation of a cat eye, the
ophthalmic artery was immediately cannulated, and artificial
perfusion was initiated. ERG responses were obtained over
several hours in order to demonstrate that the eye remained
viable. The presence of ERG responses demonstrated that the
photoreceptors were still functioning. Several additional
researchers adopted and improved the perfused eye techni-
que.30 31 33 35 36 Although most researchers used this method to
assess the toxicity of certain substances, its use provides
excellent information regarding the length of time an eye can
remain viable following enucleation. This is of particular
importance with regards to eye transplantation, as it would
be absolutely necessary to maintain the retina function of the
donor eye in order to allow transplantation to the recipient.

RGC survival after optic-nerve transection is another major
concern when evaluating ocular viability. It is well known that
following optic-nerve transection, RGCs undergo degenera-
tion.89 It is important, however, to identify the extent of RGC
loss and survival as well as what additional factors affect RGC

survival. For successful transplantation to occur, RGCs must
survive in order to regenerate the optic nerve. We conclude from
the literature review that transection of the optic nerve at a
point that is more distal from the globe produces far less RGC
loss than an injury that is proximal to the globe. Additionally,
we were able to summarise many factors that are useful in
augmenting RGC survival after optic-nerve transection.
Another promising finding regarding RGC survival was demon-
strated in cold-blooded vertebrates. In 1985, Scalia et al
performed a quantitative analysis of RGC survival following
optic-nerve injury and regeneration. Scalia was able to
demonstrate that even though the animal fully recovered vision,
only 29% of the RGCs remained after 50 weeks.90 Others have
since noted survivals of 60%,91 50%92 and 40%93 at different time
points after injury. Although these results are somewhat
variable, we can easily conclude that considerably less than
100% RGC survival is sufficient for visual recovery. The
evidence from cold-blooded vertebrates along with the increas-
ing ability to maintain RGC survival in mammals provides us
with very promising evidence regarding RGC survival in eye
transplantation.

The ability to successfully reperfuse the enucleated eye after
reanastomosis to a different blood supply is integral to
maintaining ocular viability following enucleation and trans-
plantation. Herman Sher was the first and one of the only
researchers to report the surgical feasibility of reanastomosing
the enucleated eye and to assess the presence of reperfusion
following the reanastomosis. In one experiment, Sher
attempted to reanastomose the ciliary artery of dogs to the
femoral artery in rats.18 In a second experiment, Sher

Table 2 Eye viability and retinal function in the perfused eye

Animal Eye viability (hours postenucleation) Measurement of eye viability Study

Cat 6–8 Stable ERG response Gouras and Hoff27

Bovine 5–6* (.10) Stable ERG response (small negative
deflection)

Tazawa and Seaman35

Cat 8–10 Stable ERG response Niemeyer31

Frog .9 Stable ERG response Friedman and Marchese30

Cat 4.5 Stable ERG response Sandberg et al33

Bovine 8* Stable ERG response Tseng et al36

Cat 7–9 Stable ERG response Peachey et al32

Bovine 4 mfERG (multifocal) response Shahidullah et al34

*Oxygenated blood was used instead of artificial perfusate.

Table 3 Retinal ganglion cell survival following axotomy in mammalian eyes

Distance from eye
1–3 days
postinjury (%)

10–15 days
postinjury (%)

26–30 days postinjury
(%) Study

Intraorbital (,5 mm) NA 24.7 18.2 Villegas-Perez et al47

72 23.6 NA Takano and Horie45

100 5.8 Negligible Berkelaar et al37

NA 26 5 Di Polo et al39

100 19 NA Watanabe et al48

85 24 NA Manabe et al44

NA 9.6 2 Cheng et al38

97 14.9 7 van Adel et al46

88 27 7.54 Germain et al40

100 19 NA Hou et al42

98 16.3 NA Kretz et al43

Intracranial (.8 mm) 90 68 64 Grafstein and Ingoglia41

NA 57.4 54.5 Villegas-Perez et al47

NA 65.6 71.4

100 63 49 Berkelaar et al37

NA, not applicable.
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contralaterally transplanted sheep eyes.17 For each transplanted
eye, eight vascular anastomoses were performed (two arterial
and six venous). In both experiments, anastomotic patency and
reperfusion were demonstrated by microscopic examination and
fluorescein angiography, respectively.

Although much significant research with regards to whole-
eye transplantation has been performed, much additional
research is still necessary. Future research on eye transplanta-
tion should focus on promoting optic-nerve regeneration, as
well as further enhancing ocular viability.

Table 4 Factors and details for each study: single factors that have been shown to increase retinal ganglion cell (RGC) survival following axotomy

Factor* Animal No of days postaxotomy Percentage survival difference{ Administration

aFGF80—postinjury Rat Day 30 24.5% PN

Antisemaphorin 3A Ab79—postinjury Rat Day 8 79% IO

Aurintricarboxylic acid(ATA)58—postinjury Rat Day 14 45% IO

BDNF74 78 85 68 82—postinjury Rat Day 7–14 51.1–30% – IO

Cat Day 14 12% IO

bFGF80—postinjury Rat Day 30 20.5% PN

CNTF82 46—postinjury Cat Day 14 14% IO

Rat Day 14 14.8% IO

Collicular proteoglycan60—postinjury—
intraocular

Rat Day 7, 14 26%, 48% IO

Cortisol59—postinjury Rat Day 14 33% IO

Donepezil (AchE inhibitor)75—postinjury Rat Day 7 9.5% Orally

Electrical stimulation77—postinjury Rat Day 7 29% Nerve stump

Erythropoietin (EPO)84—postinjury Rat Day 14 872 and 455 RGC/mm2{ IO

Fibroblasts72—preinjury Rat Day 7 11.8% IO

Flunarizine57—postinjury Rat Day 14 5% SubQ

GDNF64 66 68 82 85—postinjury Rat Day 7–14 37–18% IO

Cat Day 14 13% IO

GM154—preinjury Rat Day 14 18.87% IO

IGF-162—postinjury Rat Day 14 14% IO

IL-1b55—postinjury Rat Day 14 39.4% IO

Inosine42—postinjury Rat Day 14 5.9% Intraperitoneal

Latanoprost70—preinjury Rat Day 10 31.8% IO

Leukaemia inhibitory factor46—postinjury Rat Day 14 9% IO

L-NAME (NO inhibitor)67—postinjury Rat Day 10, 14 21%, 22.4% IO

Minocycline49—pre- and postinjury Rat Day 7 23% Intraperitoneal

Neurturin68—postinjury Rat Day 14 16% IO

NGF51—postinjury Rat Week 5, 7 16.7%, 16.9% IO

NOLA (NO inhibitor)67—postinjury Rat Day 10, 14 29.2%, 32% IO

NT-4 (neurotrophin)78 82—postinjury Rat Day 7, 14 38.2%, 13.2% IO

Cat Day 14 8% IO

Optic-nerve graft53—preinjury implantation Hamster Day 7 15% IO

Rifampicin63—postinjury Mice Day 14 25.9% Intraperitoneal

Schwann cells72—pre injury Rat Day 7 16.1% IO

Simvastatin43—postinjury Rat Day 7, 14 40.9%, 16.2% IO

TNF-a56—postinjury Rat Day 14 35.1% IO

*The time the factor was given is listed along with the factor.
{Results are calculated as the percentage difference of RGC survival (compared with healthy retina) in the retina of treated eyes versus the untreated eye (ie, percentage of surviving
RGC in the treated eye minus the percentage of surviving RGC in the untreated eye).
{No controls were used numbers are reported as actual numbers.
Ab, antibodies; aFGF, acidic fibroblast growth factor; BDNF, brain-derived neurotrophic factor; bFGF, basic fibroblast growth factor; CNTF, ciliary neurotrophic factor; GDNF, glial
derived neurotrophic factor; GM1, monosialotetrahexosylganglioside; IGF, insulin like growth factor; IL, interleukin; IO, intraocular; L-NAME, N-nitro-L-arginine methyl ester; NGF,
nerve growth factor; NOLA, Nv-nitro-L-arginine; PN, perineural; TNF, tumour necrosis factor.

Table 5 Factors and details for each study: combined factors that have been shown to increase retinal ganglion cell (RGC) survival following axotomy

Factor* Animal No of days postaxotomy
Percentage survival
difference{ Administration

Aurintricarboxylic acid+cortisol59—postinjury Rat Day 14 44 IO

BDNF+CNTF82—postinjury Cat Day 14 12 IO

BDNF+GDNF68 85—postinjury Rat Day 14 65.2–59.6 IO

BDNF+Neurturin68—postinjury Rat Day 14 65.1 IO

BDNF+S-PBN (N-tert-butyl-(2-sulfophenyl)-nitrone)65—
postinjury

Rat Day 14 56.4 IO

GDNF+Neurturin68—postinjury Rat Day 14 37 IO

*The time the factor was given is listed along with the factor.
{Results are calculated as the percentage difference of RGC survival (compared with healthy retina) in the retina of treated eyes versus the untreated eye (ie, percentage of surviving
RGC in the treated eye minus the percentage of surviving RGC in the untreated eye).
BDNF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic factor; GDNF, glial derived neurotrophic factor.
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