750 research outputs found

    Phenylboronic acid-diol crosslinked 6-<i>O</i>-vinylazeloyl-d-galactose nanocarriers for insulin delivery

    Get PDF
    A new block polymer named poly 3-acrylamidophenylboronic acid-b-6-O–vinylazeloyl-d-galactose (p(AAPBA-b-OVZG)) was prepared using 3-acrylamidophenylboronic acid (AAPBA) and 6-O-vinylazeloyl-D-galactose (OVZG) via a two-step procedure involving S-1-dodecyl-S-(α', α'-dimethyl-α″-acetic acid) trithiocarbonate (DDATC) as chain transfer agent, 2,2-azobisisobutyronitrile (AIBN) as initiator and dimethyl formamide (DMF) as solvent. The structures of the polymer were examined by Fourier transform infrared spectroscopy (FT-IR) and 1H NMR and the thermal stability was determined by thermal gravimetric analysis (TG/DTG). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were utilized to evaluate the morphology and properties of the p(AAPBA-b-OVZG) nanoparticles. The cell toxicity, animal toxicity and therapeutic efficacy were also investigated. The results indicate the p(AAPBA-b-OVZG) was successfully synthesized and had excellent thermal stability. Moreover, the p(AAPBA-b-OVZG) nanoparticles were submicron in size and glucose-sensitive in phosphate-buffered saline (PBS). In addition, insulin as a model drug had a high encapsulation efficiency and loading capacity and the release of insulin was increased at higher glucose levels. Furthermore, the nanoparticles showed a low-toxicity in cell and animal studies and they were effective at decreasing blood glucose levels of mice over 96 h. These p(AAPBA-b-OVZG) nanoparticles show promise for applications in diabetes treatment using insulin or other hypoglycemic proteins

    Electromagnetic Scattering Laws in Weyl Systems

    Full text link
    Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the color of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from free space's conical dispersion at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing unprecedented ability to tailor the strength of wave-matter interactions for radio-frequency and optical applications

    A novel multifunctional biomedical material based on polyacrylonitrile:preparation and characterization

    Get PDF
    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50 ~ 100 μm and width of 100 ~ 200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicty on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field

    General bubble expansion at strong coupling

    Full text link
    The strongly-coupled system like the quark-hadron transition (if it is of first order) is becoming an active play-yard for the physics of cosmological first-order phase transitions. However, the traditional field theoretic approach to strongly-coupled first-order phase transitions is of great challenge, driving recent efforts from holographic dual theories with explicit numerical simulations. These holographic numerical simulations have revealed an intriguing linear correlation between the phase pressure difference (pressure difference away from the wall) to the non-relativistic terminal velocity of an expanding planar wall, which has been reproduced analytically alongside both cylindrical and spherical walls from perfect-fluid hydrodynamics in our previous study but only for a bag equation of state. We have also found in our previous study a universal quadratic correlation between the wall pressure difference (pressure difference near the bubble wall) to the non-relativistic terminal wall velocity regardless of wall geometries. In this paper, we will generalize these analytic relations between the phase/wall pressure difference and terminal wall velocity into a more realistic equation of state beyond the simple bag model, providing the most general predictions so far for future tests from holographic numerical simulations of strongly-coupled first-order phase transitionsComment: 22 pages, 10 figure

    Effect of β-nerve growth factor on differentiation of endothelial progenitor cells in rats

    Get PDF
    Purpose: To investigate the effect of recombinant adenovirus-mediated human β-nerve growth factor (Ad-EGFP-hβ-NGF) on the differentiation of endothelial progenitor cells (EPCs) in rats.Methods: The successfully constructed Ad-EGFP-hβ-NGF and its negative control Ad-EGFP were infected into the isolated and purified rat EPCs to observe their morphological changes. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect the levels of vascular endothelial growth factor (VEGF), von Willebrand factor (vWF) and basic fibroblast growth factor (bFGF) in different rat EPC culture solutions. Western blot was performed to determine the expression of tyrosine kinase receptor A (TrKA) protein in different groups of EPCs.Results: Primary fibrous EPCs were converted into epithelium-like cells. After infection with Ad-EGFPhβ- NGF for 1 week, some EPCs became round and exhibited neural stem cell-like changes. The expression levels of VEGF, vWF and bFGF in the Ad-EGFP-hβ-NGF infection group were significantly higher than those in the control group (p &lt; 0.01). TrKA protein in Ad-EGFP-hβ-NGF infection was also significantly up-regulated compared with that in the negative control and blank control groups (p &lt;0.01).Conclusion: β-NGF up-regulates the expression of TrKA receptor protein and secretion of angiogenic growth factors (i.e., VEGF, vWF and bFGF), thereby promoting the differentiation of rat EPCs, which may contribute to angiopoiesis or vascular repair.Keywords: β-Nerve growth factor, Endothelial progenitor cells, Angiogenic growth factors, Tyrosine kinase receptor A, Cell differentiatio

    Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae

    Get PDF
    AbstractThe larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose–response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone

    OptSample: A Resilient Buffer Management Policy for Robotic Systems based on Optimal Message Sampling

    Full text link
    Modern robotic systems have become an alternative to humans to perform risky or exhausting tasks. In such application scenarios, communications between robots and the control center have become one of the major problems. Buffering is a commonly used solution to relieve temporary network disruption. But the assumption that newer messages are more valuable than older ones is not true for many application scenarios such as explorations, rescue operations, and surveillance. In this paper, we proposed a novel resilient buffer management policy named OptSample. It can uniformly sampling messages and dynamically adjust the sample rate based on run-time network situation. We define an evaluation function to estimate the profit of a message sequence. Based on the function, our analysis and simulation shows that the OptSample policy can effectively prevent losing long segment of continuous messages and improve the overall profit of the received messages. We implement the proposed policy in ROS. The implementation is transparent to user and no user code need to be changed. Experimental results on several application scenarios show that the OptSample policy can help robotic systems be more resilient against network disruption

    In situ growth of SnO2 on graphene nanosheets as advanced anode materials for rechargeable lithium batteries

    Get PDF
    Graphene with a single layer of carbon atoms densely packed in a honeycomb crystal lattice is one of attractive materials for the intercalation of lithium ion, but it has low volumetric capacity owing to low tap density. We report a method for in situ growth of SnO2 on graphene nanosheets (SGN) as anode materials for rechargeable lithium batteries. The results indicated that the SnO2 nanoparticles with size in the range of 5-10 nm and a polycrystalline structure are homogeneously supported on graphene nanosheets. The charge and discharge capacities of SGN attained to 1559.7 and 779.7 mAh/g in the first cycle at a current density of 300 mA/g. The specific discharge capacities remained at 620 mAh⋅g-1 in the 200th cycle. The SGN exhibits a superior Listorage performance with good cycle life and high capacity
    corecore