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In Situ Growth of SnO2 on Graphene Nanosheets 
as Advanced Anode Materials for Rechargeable Lithium Batteries 

 
Xiaowei Yanga, Yu-Shi Hea, Xiao-Zhen Liaoa, Jun Chenb, Gordon G. Wallaceb,  

and Zi-Feng Maa,* 
 

a Institute of Electrochemical and Energy Technology, Department of Chemical 
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 

b ARC Center of Excellence for Electromaterials Science, University of Wollongong, 
NSW 2522, Australia 

 
Graphene with a single layer of carbon atoms densely packed in a 
honeycomb crystal lattice is one of attractive materials for the 
intercalation of lithium ion, but it has low volumetric capacity 
owing to low tap density. We report a method for in situ growth of 
SnO2 on graphene nanosheets (SGN) as anode materials for 
rechargeable lithium batteries. The results indicated that the SnO2 
nanoparticles with size in the range of 5-10 nm and a 
polycrystalline structure are homogeneously supported on 
graphene nanosheets. The charge and discharge capacities of SGN 
attained to 1559.7 and 779.7 mAh/g in the first cycle at a current 
density of 300 mA/g. The specific discharge capacities remained at 
620 mAh⋅g-1 in the 200th cycle. The SGN exhibits a superior Li-
storage performance with good cycle life and high capacity. 

 
 

Introduction 
 
Graphene has attracted tremendous attention from both fundamental and applied science 
communities since it was first reported in 2004 (1). This nanostructure holds great 
potential because of the unique electronic (2) and mechanical properties (3). In particular, 
these materials have superior electric conductivity, high surface areas, chemical tolerance 
and a broad electrochemical window that have been very advantageous in the application 
of solar cells (4), hydrogen storage (5), lithium ion batteries (6) or capacitors (7). 
However, two disadvantages are inherent in a graphene anode for the intercalation of 
lithium ion: low volumetric capacity owing to low tap density and a specific capacity that 
is limited by the theoretical maximum capacity of the graphite structure (372 mAh⋅g-1). 
Increasing the capacity of a graphite structure anode materials by modifying with high 
capacity Li-storage compounds, such as those derived from Sn (8), SnNi (9) and Si (10) 
is a demonstrated route to improvement. 

In particular, SnO2 has been proposed as one of a family of alternative anode 
materials with a high Li-storage capacity, but the practical use of this material has been 
frustrated by rapid fading in the capacity upon cycling, due to the severe volume changes 
that occur during lithium insertion and extraction. Various nanostructures of SnO2, such 
as nanoparticles (11), nano-architecture (12), nanotubes (13), nanodisks (14) and carbon 
nanotube coated SnO2 nanowire (15) have been developed in order to improve the 
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cycling performance. Recently, SnO2 /graphene nanoporous electrodes by surrounding 
SnO2 nanoparticles with graphene nanosheets to improve the capacity attained with 
increased cycle number was reported (16), the first charge and discharge capacity of 
the SnO2/GNS are 1890 and 810 mAh/g at a current density of 50 mA/g.  Li et al 
(17) develop a new method to prepare the processable aqueous dispersions of graphene 
nanosheet, herein, based on previous works, we report a method for in situ growth of 
SnO2 on graphene nanosheets (SGN), and the charge and discharge capacities of the as-
prepared SGN have a much better performance at the fast charge–discharge rate.  
 

Experimental 
 

Graphite oxide (GO) was synthesized from natural graphite powder (Grade 230, 
Asbury Carbons) using the Hummers method (17). After being purified by several runs of 
centrifugation/washing, 50 mg GO was exfoliated into water (100 mL) by ultrasonication 
for one hour to form GO suspension. 100 mg SnCl2 (98 %) was put into 10 mL of 
distilled water inside a glass flask and then added 0.3 mL of HCl (38%). The GO 
suspension was added into the above SnCl2 solution and the pH value was adjusted to 10 
using 1 M NH3⋅H2O solution. This mixture was ultrasonicated for 5 min and was reduced 
with hydrazine hydrate (85 %) under stirring at 80℃ for 24h. The final product of SGN 
was rinsed with distilled water. 

The morphology and structure of the prepared SGN anode material was characterized 
by SEM (Hitachi S-900), TEM (JEOL JEM-2100F), powder XRD (D/max-2200/PC, 
Rigaku, 40 kV, 20mA, Cu Ka radiation) and Raman (Jobin Yvon HR800 confocal Raman 
system, 632.8 nm diode laser excitation). The anode was prepared by mixing 75 wt% 
SGN active materials, 15 wt.-% acetylene black and 10 wt.-% polyvinylidene 
difluoride and incorporated into cells with lithium foil counter electrode, UP3025 
separator, and 1 M LiPF6/DMC+EC (1:1, v/v). Charge-discharge capacity and 
cycling performance of battery were measured using a battery test system 
(LAND CT2001A model, Wuhan Jinnuo).  
 

Results and discussion 
 

As shown in Fig. 1a, the SEM image of the SGN takes on corrugations and scrollings, 
revealing that the structural manipulation of the nanosheets is successfully achieved even 
after supporting SnO2 nanoparticles. Fig. 1b and c show typical TEM images of SGN. 
The surface of the SGN is coated with SnO2 nanoparticles with an average diameter of 5-
10 nm. The high-resolution TEM exhibits two distinct images, lines, and spherical 
shapes. The former are due to SGN, whereas the latter could be attributed to SnO2 
nanoparticles. It is quite clear that loosely packed SnO2 nanoparticles are homogeneously 
distributed on the GNS. The selected area electron diffraction (SAED) (Fig. 1d) also 
proves that the as-prepared SGN has a polycrystalline structure and the polycrystalline 
rings ascribed to the {110}, {101}, {211} and {310} diffraction planes of tetragonal 
rutile-like SnO2. 

Fig. 2a shows the XRD patterns of SGN. The maximal diffraction peaks of both 
specimen are consistent with the tetragonal SnO2 lattice constants as a= 4.738 Å and 
c=3.187 Å (JCPDS 41-1445), which is consistent with the result of TEM and confirms 
that the specimen are mainly constituted of SnO2. No obvious peaks corresponding to 
SnCl2, Sn or other tin oxides are observed. Raman spectroscopy is a powerful 
nondestructive tool used to characterize carbonaceous materials, particularly for 
distinguishing ordered and disordered crystal structures of carbon. The Raman spectrum 
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of the SGN (Fig. 2b) contains both G (corresponding to E2g phonon of C sp2 atoms) and 
D bands (a breathing mode of κ-point phonons of A1g symmetry) at 1588.1 and 1324.7 
cm-1, respectively. The ratio of D to G band intensity of SGN is similar to the reduced 
GO (18), suggesting that a similar partially ordered graphite crystal structure is present.  

 

 
 

Fig. 1. SEM image (a), high-resolution TEM (b), (c) and selected area electron diffraction 
pattern (d) of SGN 
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    Fig. 2. XRD pattern (a) and Raman spectrum (b) of SGN 
 

The SGN is evaluated as an anode material for the intercalation of lithium ion. In 
theory, SnO2 has a higher reversible specific charge capacity than that of conventional 
graphite anodes because of the ability of Sn to alloy with lithium to a stoichiometry of 
Li4.4Sn: 

SnO2 + 4Li+ + 4e−→Sn + 2Li2O                                            [1] 
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Sn + xLi+ +xe−→ LixSn (0≤x≤4.4)                                          [2] 
 

During the first charge and discharge process, SnO2 will irreversibly reduced to form 
Sn metal when reacts with Li ion as described in Eq. 1 and the stored lithium ions will 
not be released, resulting in an irreversible capacity. Further charging (0.9-0.2 V) lead to 
formation of Li-Sn alloys. The reaction is reversible, and the lithium ions will be released 
when the LixSn decomposes (Eq. 2). As shown in Fig. 3a, the experimental values for the 
first cycle charge (Li+ insertion) and discharge (Li+ extraction) capacities are very high, 
at 1559.7 and 779.7 mAh/g, respectively, measured at a current density of 300 mA/g. The 
initial capacity loss (50.0 %) could be attributed primarily to SnO2 reduction; however 
minor capacity losses could be due to the formation of the solid electrolyte interface 
(SEI). Since some functional groups remain unreduced by hydrazine on the surface of 
SGN (17), the Li+ stored in these locations are more difficulty to extract, accounting for 
the large disparity between the charge and discharge capacities.  
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Fig. 3 Charge-discharge profiles (a) and cycling performance (b) of SGN anode material 

at a constant current density of 300 mA g−1. 
 

The change of reversible capacity of the as-prepared SGN at a constant charge-
discharge current density of 300 mA/g is shown in Fig. 3b. It can be seen, the cycling 
performance over 200 cycles, the specific discharge capacities reaching 825.7, 699.4, 
644.7, 636.0, 641.0 and 659.4 mAh/g at the second, 10th, 20th, 30th, 40th and 50th cycle, 
respectively, and remain at 620 mAh/g (>75% of the reversible capacity) in the 200th 
cycle. The voltage hysteresis of the as prepared SGN is similar to the carbonaceous anode 
material (9), it can be expound via the mechanism described in the literature (19). The as-
prepared SGN anode shows high specific capacity and good cycling performance.  It 
indicates that the mechanical integrity of the electrode is fully maintained.  The reason 
can be interpreted as follows. Firstly, we know that the poor cyclability for SnO2 as 
anodes is due to its large volume changes during the alloying and dealloying processes, 
which cause internal destructive changes in the electrode. In this work, Sn2+ ions are 
adsorbed on the surface of GO and then form a compact structure with GNS, similar to 
the structure with carbon nanotubes (20). This unique structure and excellent flexibility 
not only act as a buffer to relieve the strain associated with the volume variations, but 
also prevents the aggregation of SnO2 nanoparticles upon cycling, which are believed to 
lessen the effects caused by volume change during cycling and thus alleviate the 
degrading of the electrode. Secondly, utilizing SGN not only advance the conductivity of 
the electrode, which would facilitate the electron transport and greatly decrease the 
Ohmic loss, but also offered a large surface area that made for enhancing the capacity (6, 
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7). Thirdly, in situ growth of SnO2 nanoparticles on the surface of GNS resulted in 
marked abatement of the effective diffusion distance and increased the effective surface 
area. These act together to avoid the large capacity losses attributed to the alloying and 
dealloying processes. 
 

Conclusions 
 

In conclusion, we report a method for in situ growth of SnO2 on GNS as an anode 
material for lithium ion batteries. The SnO2 nanoparticles with size in the range of 5-10 
nm are homogeneously supported on GNS. The as-prepared SGN anode exhibits a 
superior Li-storage performance with a good cycle life and high capacity. The first 
charge and discharge capacity of the SGN are 1559.7 and 779.7 mAh/g at higher 
charge-discharge rate (at a current density of 300 mA/g), which is much batter than that 
of SnO2 nanoparticles surrounded by GNS reported in literature (16). It indicates that the 
preparation process affects the structure and performance remarkably. The particular 
structure of the SGN can enhance the rate of electron transport and greatly decrease the 
Ohmic loss, and offer a large surface area that made for enhancing the capacity.  
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