390 research outputs found

    Conversion of renewable feedstocks into polymer precursors and pharmaceutical drugs

    Get PDF
    Fossils fuels are highly demanded in everyday life domestically or industrially. Fossil fuels are finite resources and they are rapidly depleting, as such alternative renewable feedstocks are sought to replace fossil fuels. Tall oil from paper processing and cashew nut shell liquid from the cashew nut industry are the two major renewable sources we studied, they are both waste byproducts, and have the potential to be converted into value-added materials. Tall oil from the paper industry mainly contained tall oil fatty acid, and under isomerising methoxycarbonylation with palladium catalyst, dimethyl 1,19-dimethyl nonadecanedioate can be obtained. This difunctional ester, dimethyl 1,19-dimethyl nonadecanedioate, is converted to diols, secondary and primary diamines by a hydrogenation reaction with ruthenium complexes of 1,1,1-tris(diphenylphosphinometyl)ethane (triphos) as catalysts in the presence of water, amine or aqueous ammonia respectively. In the case of aqueous ammonia it is necessary to use a two step reaction via diol to obtain 1,19-diaminononadecane. Diesters, diols and diamines are useful precursors for the synthesis of polyesters and polyamides. Difunctional substrates with 8-19 carbon chains are all tolerated under the reaction conditions and are successfully converted to the corresponding diols and diamines in high yields. Under similar hydrogenation conditions with the same ruthenium catalyst, cyclic products were predominantly produced with decreased chain length. N-heterocycles, which are important building blocks for the synthesis of drug molecules, were formed from the hydrogenation of diesters with 4-7 carbon chains in the presence of an amine. Another polymer precursor, ε-caprolactam, which is the precursor for Nylon 6, is obtained in a reasonable yield from both adipic acid and adipate esters together with aqueous ammonia in the presence of ruthenium catalyst. Cashew nut shell liquid was also converted into useful medical drugs, such as norfenefrine, rac-phenylephrine, etilefrine and fenoprofene in reasonable yields. Most of these drug molecules have been formed from 3-vinylphenol by catalytic hydroxyamination followed by methylation or ethylation. 3-Vinylphenol was synthesised from cardanol by ethenolysis to 3-non-8-enylphenol followed by isomerising ethenolysis, whilst the N-alkylation reactions used methyl or ethyl triflate to avoid dialkylation. Fenoprofene was formed by firstly O-phenylating cardanol then ethenolysis followed by isomerising ethenolysis to form 1-phenoxy-3-vinylbenzene. Methoxycarbonyation followed by hydrolysis formed the final product in good yield. Our methods start from renewable waste materials and avoid unpleasant reagents in the original stoichiometric synthesis of those drugs, for example, cyanide is no longer essential for the synthesis of fenoprofene."The work was supported by the EPSRC for the critical mass grant 'Clean Catalysis for Sustainable Development' (EP/J018139/1); and Sasol Technology, UK (a case studentship Y. S.)." -- Acknowledgement

    Multiproduct Multiperiod Newsvendor Problem with Dynamic Market Efforts

    Get PDF
    We study a multiperiod multiproduct production planning problem where the production capacity and the marketing effort on demand are both considered. The accumulative impact of marketing effort on demand is captured by the Nerlove and Arrow (N-A) advertising model. The problem is formulated as a discrete-time, finite-horizon dynamic optimization problem, which can be viewed as an extension to the classic newsvendor problem by integrating with the N-A model. A Lagrangian relaxation based solution approach is developed to solve the problem, in which the subgradient algorithm is used to find an upper bound of the solution and a feasibility heuristic algorithm is proposed to search for a feasible lower bound. Twelve kinds of instances with different problem size involving up to 50 products and 15 planning periods are randomly generated and used to test the Lagrangian heuristic algorithm. Computational results show that the proposed approach can obtain near optimal solutions for all the instances in very short CPU time, which is less than 90 seconds even for the largest instance

    The Effect of Conditioning on the Flotation of Pyrrhotite in the Presence of Chlorite

    Get PDF
    The influence of conditioning on the flotation of pyrrhotite in the presence of chlorite was investigated through flotation tests, sedimentation tests, and X-ray photoelectron spectroscopy (XPS) analysis. The flotation results show that chlorite slimes dramatically impair the flotation of pyrrhotite. Sedimentation and flotation tests reveal that conditioning can effectively remove chlorite slimes from pyrrhotite surfaces, resulting in an enhanced flotation recovery of pyrrhotite. When mixed minerals were conditioned under the natural atmosphere, a faster conditioning speed and longer conditioning time decreased the flotation recovery of pyrrhotite. However, when mixed minerals were conditioned under a nitrogen atmosphere, a more intensive conditioning process provided better flotation results. XPS analyses illustrate that a faster conditioning speed and longer conditioning time under the natural atmosphere accelerates the oxidation of pyrrhotite, leading to a decrease in the flotation recovery of pyrrhotite

    Numerical analysis of yield properties of closed-cell aluminum foam under multiaxial loads by 3D voronoi model

    Get PDF
    Metallic foam is a typical porous material whose yield surface is related to not only von Mises equivalent stress but also the hydrostatic pressure. It is essential to study the yield properties of closed-cell aluminum foam under complex loading conditions. However, because the current experimental technique may support only a few proportions of multiaxial loading, it is hard to learn the yield surface well especially for the tensile hydrostatic pressure. In this article, we explored a numerical method to learn the yield properties of aluminum foam, in which the meso structures of aluminum foam were simulated by 3D Voronoi method. In addition, the yield surface of aluminum foam was drawn successfully with the numerical method. The main works included: (1) In our numerical simulation, we tested the calculating parameters such as mass scaling, elements number, and loading velocity on simulation results and verified the homogeneity of the 3D Voronoi model firstly. Furthermore, the optimized calculating parameters were determined by considering both reliability and feasibility of the calculation. Homogeneity of 3D Voronoi model was checked by the compression behaviors of aluminum in different directions. (2) In order to overcome the difficulty to determine critical yield state of metallic foams under complex loads, we recommended criterion by setting a dimensionless plastic dissipation value to determine the onset yield state of the foam under multiaxial loads. The critical value of dimensionless plastic dissipation was deduced from the common criterion—0.2% plastic strain in uniaxial loading, and the effect of relative densities on critical values was analyzed. (3) Three normal stresses were applied on cubic aluminum foam proportionally to implement the proportional loading. The different loading proportional factors of the three normal stresses were set widely to insure the yield surface including enough data, such as the hydrostatic loads cover from minimum negative to maximum positive values; each proportion has three loading proportional factors. Further, effects of the relative density on yield surface were investigated

    Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress

    Full text link
    We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small angle x-ray scattering. The results show an abrupt transition at an Ar background pressure Pc; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below Pc smooth films are produced, while above Pc roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi2 films are correlated with in situ measurement of stress in WSi2/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at Pc. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio
    • …
    corecore