186 research outputs found

    The evolution of Turing Award Collaboration Network : bibliometric-level and network-level metrics

    Get PDF
    The year of 2017 for the 50th anniversary of the Turing Award, which represents the top-level award in the computer science field, is a milestone. We study the long-term evolution of the Turing Award Collaboration Network, and it can be considered as a microcosm of the computer science field from 1974 to 2016. First, scholars tend to publish articles by themselves at the early stages, and they began to focus on tight collaboration since the late 1980s. Second, compared with the same scale random network, although the Turing Award Collaboration Network has small-world properties, it is not a scale-free network. The reason may be that the number of collaborators per scholar is limited. It is impossible for scholars to connect to others freely (preferential attachment) as the scale-free network. Third, to measure how far a scholar is from the Turing Award, we propose a metric called the Turing Number (TN) and find that the TN decreases gradually over time. Meanwhile, we discover the phenomenon that scholars prefer to gather into groups to do research with the development of computer science. This article presents a new way to explore the evolution of academic collaboration network in the field of computer science by building and analyzing the Turing Award Collaboration Network for decades. © 2014 IEEE

    Solving optimal power flow problems via a constrained many-objective co-evolutionary algorithm

    Get PDF
    The optimal power flow problem in power systems is characterized by a number of complex objectives and constraints, which aim to optimize the total fuel cost, emissions, active power loss, voltage magnitude deviation, and other metrics simultaneously. These conflicting objectives and strict constraints challenge existing optimizers in balancing between active power and reactive power, along with good trade-offs among many metrics. To address these difficulties, this paper develops a co-evolutionary algorithm to solve the constrained many-objective optimization problem of optimal power flow, which evolves three populations with different selection strategies. These populations are evolved towards different parts of the huge objective space divided by large infeasible regions, and the cooperation between them renders assistance to the search for feasible and Pareto-optimal solutions. According to the experimental results on benchmark problems and the IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems, the proposed algorithm is superior over peer algorithms in solving constrained many-objective optimization problems, especially the optimal power flow problems

    Several Critical Cell Types, Tissues, and Pathways Are Implicated in Genome-Wide Association Studies for Systemic Lupus Erythematosus

    Get PDF
    We aimed to elucidate the cell types, tissues, and pathways influenced by common variants in systemic lupus erythematosus (SLE). We applied a nonparameter enrichment statistical approach, termed SNPsea, in 181 single nucleotide polymorphisms (SNPs) that have been identified to be associated with the risk of SLE through genome-wide association studies (GWAS) in Eastern Asian and Caucasian populations, to manipulate the critical cell types, tissues, and pathways. In the two most significant cells’ findings (B lymphocytes and CD14+ monocytes), we subjected the GWAS association evidence in the Han Chinese population to an enrichment test of expression quantitative trait locus (QTL) sites and DNase I hypersensitivity, respectively. In both Eastern Asian and Caucasian populations, we observed that the expression level of SLE GWAS implicated genes was significantly elevated in xeroderma pigentosum B cells (P ≤ 1.00 × 10−6), CD14+ monocytes (P ≤ 2.74 × 10−4) and CD19+ B cells (P ≤ 2.00 × 10−6), and plasmacytoid dendritic cells (pDCs) (P ≤ 9.00 × 10−6). We revealed that the SLE GWAS-associated variants were more likely to reside in expression QTL in B lymphocytes (q1/q0 = 2.15, P = 1.23 × 10−44) and DNase I hypersensitivity sites (DHSs) in CD14+ monocytes (q1/q0 = 1.41, P = 0.08). We observed the common variants affected the risk of SLE mostly through by regulating multiple immune system processes and immune response signaling. This study sheds light on several immune cells and responses, as well as the regulatory effect of common variants in the pathogenesis of SLE

    Expression and Significance of MicroRNA-183 in Hepatocellular Carcinoma

    Get PDF
    Objective. In our previous study, we found that some miRNAs were deregulated in hepatocellular carcinoma (HCC), including miR-183. However, the expression of miR-183 in the progression of benign liver diseases to HCC and its correlation with clinicopathologic factors remain undefined. Methods. MiR-183 expression was measured in normal controls (NC) (n=21), chronic viral hepatitis B or C (CH) tissues (n=10), liver cirrhosis (LC) tissues (n=18), HCC tissues (n=92), and adjacent nontumor tissues (NT) (n=92) by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Results. The expression levels of miR-183 were significantly higher in HCC than in NT, LC, CH, and NL (P=0.001, P<0.001, P=0.011, P<0.001, resp.). The upregulated miR-183 in HCC was correlated with TNM stage (P=0.042) and cirrhosis (P=0.025). The Kaplan-Meier survival analysis showed that miR-183 expression was not associated with the survival of HCC patients. However, miR-183 yielded an area under the curve (AUC) of 0.808 with 59.8% sensitivity and 91.8% specificity in discriminating HCC from benign liver diseases (CH and LC) or NC. Conclusions. The upregulated miR-183 may associate with onset and progression of HCC, but not with the patient survival. A further research is needed to determine the potential of miR-183 as biomarker for HCC

    Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation

    Get PDF
    Abstract: The electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li0.75CoO2, Li0.8333CoO2, and Li0.8571CoO2 phases and report a new Li0.875CoO2 ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stablest Li0.0625C6 dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li3xLa2/3−xTiO3 (0 < x < 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry

    miRNA profiling in intrauterine exosomes of pregnant cattle on day 7

    Get PDF
    Intrauterine exosomes have been identified to be involved in the embryo development and implantation. The aim of this study was to explore the role of miRNAs in intrauterine exosomes in bovine pregnancy. Intrauterine exosomes were collected from uterine flushing fluids of three donor and three recipient Xianan cows 7 days after fertilization. Intrauterine exosomes miRNAs were extracted and the exosomal miRNAs expression levels were analyzed. Sixty miRNAs differed significantly in their amounts between donors and recipients (p-value 1). Twenty-two miRNAs were upregulated and 38 downregulated in the group of donor cows. The bta-miR-184 was the most significant (PBenjamini-Hochberg < 0.001). A total of 9,775 target genes were predicted using the 60 miRNAs. GO and KEGG analysis showed that the target genes were enriched in several biological processes or pathways associated with embryo implantation and endometrial development, such as cell adhesion, cell junction, focal adhesion, and Rap1 signaling pathway. Our findings suggest that, in cattle early pregnancy stage, these differently expressed miRNAs in intrauterine exosomes involved in embryo implantation and endometrial development, which may exert a significant effect and influence the uterine microenvironment for embryo implantation. These results could provide reference for screening and exploring the intrauterine exosomal miRNA affecting embryo implantation

    Microglia Mediate Synaptic Material Clearance at the Early Stage of Rats With Retinitis Pigmentosa

    Get PDF
    Resident microglia are the main immune cells in the retina and play a key role in the pathogenesis of retinitis pigmentosa (RP). Many previous studies on the roles of microglia mainly focused on the neurotoxicity or neuroprotection of photoreceptors, while their contributions to synaptic remodeling of neuronal circuits in the retina of early RP remained unclarified. In the present study, we used Royal College of Surgeons (RCS) rats, a classic RP model characterized by progressive microglia activation and synapse loss, to investigate the constitutive effects of microglia on the synaptic lesions and ectopic neuritogenesis. Rod degeneration resulted in synapse disruption and loss in the outer plexiform layer (OPL) at the early stage of RP. Coincidentally, the resident microglia in the OPL increased phagocytosis and mainly engaged in phagocytic engulfment of postsynaptic mGluR6 of rod bipolar cells (RBCs). Complement pathway might be involved in clearance of postsynaptic elements of RBCs by microglia. We pharmacologically deleted microglia using a CSF1 receptor (CSF1R) inhibitor to confirm this finding, and found that it caused the accumulation of postsynaptic mGluR6 levels and increased the number and length of ectopic dendrites in the RBCs. Interestingly, the numbers of presynaptic sites expressing CtBP2 and colocalized puncta in the OPL of RCS rats were not affected by microglia elimination. However, sustained microglial depletion led to progressive functional deterioration in the retinal responses to light in RCS rats. Based on our results, microglia mediated the remodeling of RBCs by phagocytosing postsynaptic materials and inhibiting ectopic neuritogenesis, contributing to delay the deterioration of vision at the early stage of RP
    • …
    corecore