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The optimal power flow problem in power systems is characterized by a number
of complex objectives and constraints, which aim to optimize the total fuel cost,
emissions, active power loss, voltage magnitude deviation, and other metrics
simultaneously. These conflicting objectives and strict constraints challenge
existing optimizers in balancing between active power and reactive power,
along with good trade-offs among many metrics. To address these difficulties,
this paper develops a co-evolutionary algorithm to solve the constrained
many-objective optimization problem of optimal power flow, which evolves
three populations with different selection strategies. These populations are
evolved towards different parts of the huge objective space divided by large
infeasible regions, and the cooperation between them renders assistance to the
search for feasible and Pareto-optimal solutions. According to the experimental
results on benchmark problems and the IEEE 30-bus, IEEE 57-bus, and IEEE
118-bus systems, the proposed algorithm is superior over peer algorithms
in solving constrained many-objective optimization problems, especially the
optimal power flow problems.

KEYWORDS

optimal power flow, constrained optimization, many-objective optimization, co-
evolutionary algorithms, metaheuristics

1 Introduction

Optimal power flow (OPF) is a prominent area of power system optimization, where
the primary goal is to identify the optimal operations and management strategies for
power systems, so as to maximize the profit and ensure safety and reliability. It optimizes
a set of control variables including active power generation of generators, bus voltages of
generators, transformer tap ratios, and reactive power of shunt compensators, achieving the
optimization of specific objectives and the satisfaction of multiple constraints (Warid et al.,
2018). Conventional OPF problems consider a single objective with various forms, and there
has been a growing interest in the study of multi-objective optimal power flow (MOOPF)
(Chen et al., 2018). MOOPF allows for a more comprehensive evaluation of economic
efficiency, environmental friendliness, and power system reliability, providing a broader
perspective on power system optimization. Recently, many-objective optimal power flow
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(MaOOPF) has also gained attention for its thorough consideration
of the operational status of power systems (Zhang et al., 2019),
including fuel costs, emissions, voltage magnitude deviations, and
active power losses. In short, studying OPF, MOOPF, and MaOPF
is essential for advancing the optimization of power systems, while
these problems pose challenges to optimizers due to the various
objectives and constraints characterized by non-linearity, non-
convexity, and high dimensionality (Li et al., 2021).

In the past, mathematical programming methods have been
utilized to address OPF problems with a single objective, such as
interior pointmethod (Momoh andZhu, 1999), linear programming
(Mota-Palomino and Quintana, 1986), and nonlinear programming
(Habibollahzadeh et al., 1989).However, the non-convex landscapes
and strict constraints entrap mathematical programming methods
in local optimums, preventing them from finding the global
optimal solutions. To overcome this issue, metaheuristics have
emerged to solve OPF problems in the last decade. These include
the adaptive constraint differential evolution (Li et al., 2021), the
enhanced differential evolutionwith self-adaptive penalty constraint
handling technique (Li et al., 2020), the improved chaotic flower
pollination algorithm (Daqaq et al., 2022), the modified Gaussian
bare-bones Levy-flight firefly algorithm (Alghamdi, 2022), and
the probabilistic optimal power flow calculation method based
on adaptive diffusion kernel density estimation (Li et al., 2019a).
These metaheuristics have demonstrated promising performance in
solving single-objective OPF problems, but the consideration of a
single metric limits their applications in complex power systems.

On the other hand, MOOPF refers to highly nonlinear
constrained multi-objective optimization problems, which is more
practical but requires the balance between multiple conflicting
metrics (Biswas et al., 2020). To solve MOOPF problems effectively,
multi-objective evolutionary algorithms and swarm intelligence
algorithms have been customized. For instance, a modified multi-
objective evolutionary algorithm based on decomposition was
suggested in (Zhang et al., 2016), a hybrid bat algorithm with
constrained Pareto fuzzy dominance was suggested in (Chen et al.,
2019), and the selection and mutation strategies of differential
evolution were embedded in an enhanced variant of NSGA-III
in (Huang et al., 2018). Recently, an improved heap optimization
algorithm was suggested for MOOPF (Shaheen et al., 2022),
and the multi-objective particle swarm optimization algorithm
(Shaheen et al., 2022) and its improved version (Qian and Chen,
2022) were also employed for MOOPF.

With the continuous development of power systems, the need
for extendingMOOPF toMaOOPF turns out to be urgent.MaOOPF
is crucial for promoting the sustainable development of power
systems, as it involves a greater number of objectives suitable for
the planning of modern power systems. The introduction of more
objectives makes the optimization problems more challenging, and
high-performance optimizers have been put on the agenda. So far,
only a few optimizers have been used to addressMaOOPF problems,
including the two-step knee point-driven evolutionary algorithm (Li
and Li, 2018), an improved NSGA-III with adaptive elimination
strategy (Zhang et al., 2019), an MOEA/D with many-stage
dynamical resource allocation strategy (Zhang et al., 2020), a many-
objective gradient-based optimizer (Premkumar et al., 2021), and
the many-objective marine predators algorithm (Khunkitti et al.,
2022).

Evolutionary algorithms have shown effectiveness in solving
various complex problems Tian et al. (2019b); Xiang et al. (2022);
Yang et al. (2022), including those with many objectives and
constraints. Evolutionary many-objective optimization has been
developed for 2 decades, where a number of evolutionary
algorithms have shown effectiveness in solving various many-
objective optimization problems (Li et al., 2015). State-of-the-art
many-objective evolutionary algorithms strike a balance between
many objectives by using four categories of ideas, including
diversity enhancement (Li et al., 2014; Zhang et al., 2015b), new
dominance relations (Zhu et al., 2016; Tian et al., 2019a), objective
decomposition (Zhang and Li, 2007; Deb and Jain, 2013), and
performance indicators (Tian et al., 2016; Tian et al., 2018). Also,
evolutionary constrained multi-objective optimization has gained
attention in recent years, and some evolutionary algorithms
have shown effectiveness in handling constrained multi-objective
optimization problems (Liang et al., 2023). Existing constrained
multi-objective evolutionary algorithms handle complex constraints
with several ideas, such as constrained dominance principle
(Deb et al., 2002), penalty functions (Xia et al., 2020), multi-stage
frameworks (Tian et al., 2022), and co-evolutionary frameworks
(Tian et al., 2021). However, the development of evolutionary
constrained many-objective optimization is in its infancy, where the
large infeasible regions located in high-dimensional objective spaces
significantly hamper the approximation of constrainedPareto fronts.
Currently, the majority of multi-objective evolutionary algorithms
can only cross through infeasible regions in low-dimensional
objective spaces, whereas few are scalable to many-objective
optimization (Ming et al., 2022a; Ming et al., 2022b).

Focusing on the MaOOPF problems in power systems, this
work proposes a co-evolutionary algorithm for solving constrained
many-objective optimization problems. More specifically, the
proposed algorithm suggests a co-evolutionary framework with
three populations, which are separately evolved considering
different priorities of objectives and constraints. These populations
are responsible for searching different parts of the high-dimensional
objective space, so as to break through large infeasible regions more
easily. According to the experimental comparisons with state-of-
the-art counterparts, the proposed algorithm exhibits superiority
on not only MaOOPF problems but also challenging benchmark
problems with up to ten objectives and five constraints.

The rest of this paper is organized as follows. From the
perspective of constrained many-objective optimization, Section 2
introduces the mathematical definition of the MaOOPF problem
considered in this work. In Section 3, the detailed procedure of
the proposed co-evolutionary algorithm is presented. To verify
the effectiveness of the proposed algorithm, Section 4 conducts
comparative experiments on benchmark problems and MaOOPF
problems. Finally, conclusions and future work are given in
Section 5.

2 Problem formulation

Figure 1 illustrates the input and output of optimal power flow
with respect to the IEEE 30-bus system. The input represents
the topological structure and requirements of the power system,
including conductance, susceptance, rated voltage, and many other
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FIGURE 1
Illustration of the input and output of optimal power flow with respect to the IEEE 30-bus system.

parameters. The output represents the control variables (i.e.,
decision variables) to be optimized, including voltages of generators,
transformer tap ratios, reactive power of shunt compensator, and
active power of generators. By considering economic viability,
carbon emission limitations, energy efficiency, safety, and stability,
MaOOPFprovides a comprehensive evaluation of power systems. Its
objectives are to maximize operational efficiency while enhancing
energy utilization and environmental benefits, and its constraints
are to strike a balance between power outputs and demands. In
the following, the mathematical definition of the MaOOPF problem
is detailed from the perspective of constrained many-objective
optimization.

2.1 Constrained many-objective
optimization problems

In general, a problem involving four or more objectives and
subject to a set of constraints is referred to as a constrained
many-objective optimization problem,which can bemathematically
represented using the following definition:

minimize f (x) = ( f1(x) , f2(x) ,…, fm(x))

subject to h (x) = (h1(x) ,…,hp(x)) = 0

g(x) = (g1(x) ,…,gq(x)) ≤ 0

where x = (x1,x2,…,xd) ∈ X

X = {x ∣ l ≤ x ≤ u}

l = (l1, l2,…, ld) ,u = (u1,u2,…,ud)

, (1)

where f(x) arem ≥ 4 objectives to be optimized simultaneously, h(x)
are p equality constraints, and g(x) are q inequality constraints.

Besides, x = (x1,x2,…,xd)denotes a solution consisting of ddecision
variables in the decision space X.

A solution in X that satisfies all the p+ q constraints is referred
to as a feasible solution, otherwise, it is considered an infeasible
solution. A solution that is not Pareto dominated by any other
solutions in X is referred to as a global optimal solution, where
y dominates x indicates that fi(y) ≤ fi(x) for all i = 1,…,m and
fj(y) < fj(x) for at least one j = 1,…,m. Note that only minimization
problems are considered for consistency. The goal of solving a
constrained many-objective optimization problem is to find a set
of feasible and global optimal solutions, which spread evenly in the
high-dimensional objective space. That is, the obtained solution set
should be of good convergence, diversity, and feasibility.

2.2 Mathematical definition of MaOOPF

The core of optimal power flow is to ensure the balance between
power outputs and demands, which are represented by the following
power balance equations (Li et al., 2021):

PGi = PDi +Vi

nb

∑
j=1

Vj (Gk cosθi→j +Bk sinθij) = 0,

i = 1,…,nb, k = 1,…,nl

QGi = QDi +Vi

nb

∑
j=1

Vj (Gk cosθij +Bk sinθij) = 0,

i = 1,…,nb, k = 1,…,nl

Tt = ViVj, t = 1,…,nt, i, jare thebuses

connectedtotransformer t

QCc = V2
cBc, c = 1,…,nc

, (2)
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where PGi and QGi denote the active power and reactive power
outputs of the generator at bus i, respectively, PDi and QDi denote
the active power and reactive power demands of bus i, Gk and Bk
denote the conductance and susceptance of the kth branch between
bus i and bus j, respectively, θij denotes the voltage phase angle
difference between the starting bus i and the ending bus j of a
branch, Tt denotes the transformer tap ratio of transformer t, and
QCc denotes the reactive power of shunt compensator c. Besides, nb
is the number of buses,nl is the number of branches,nt is the number
of transformers, and nc is the number of shunt compensators.

While some constrained multi-objective optimization models
directly involve the above equality constraints to be handled by
optimizers (Kumar et al., 2021), they are difficult to be satisfied
by metaheuristics using stochastic search paradigms. Therefore,
the Newton-Ralph method based power flow calculation provided
by Matpower (Zimmerman et al., 2010) is employed to satisfy
these equality constraints, and thus only inequality constraints
should be handled by metaheuristics. The input of power flow
calculation consists of some topological structure parameters (i.e.,
conductance G, susceptance B, voltage limits Vmin,Vmax, power
limits PGmin,PGmax, and power demands PD,QD) and decision
variables (i.e., voltages of generators VG, transformer tap ratios T,
reactive power of shunt compensators QC, and active power of
generators PG1,…,ng−1).The output of power flow calculation consists
of state variables used in objective and constraint calculation,
including voltages of busesV, active power of slack busPGng, reactive
power of generatorsQG, phase angles θ, and power flow of branches
SL.

Afterwards, five objectives and a series of constraints can be
calculated accordingly (Zhang et al., 2019). The first objective f1
minimizes the total fuel cost, which is defined as

f1 = TFC =
ng

∑
i=1
(ai + biPGi + ciPG2

i ) , (3)

where ng is the number of generators, PGi is the active power output
of the ith generator, and ai,bi,ci are fixed fuel cost coefficients of the
ith generator. The second objective f2 minimizes the total emission,
which is defined as

f2 = TE =
ng

∑
i=1

αi + βiPGi + γiPG
2
i + ϱie

(λiPGi), (4)

where αi,βi,γi,ϱi,λi represent fixed emission coefficients of the ith
generator. The third objective f3 minimizes the active power loss,
which is defined as

f3 = APL =
nl

∑
k=1
(Gk (V2

i +V
2
j − 2ViVj cosθij)) , (5)

where nl is the number of branches, Gk is the conductance of the
kth branch, Vi,Vj are the voltages of two buses connected to the
ith branch, and θij is the voltage phase angle difference between the
two buses. The fourth objective f4 minimizes the voltage magnitude
deviation, which is defined as

f4 = VMD =
npq

∑
i=1
|(Vi −Vr)| , (6)

where npq is the number of PQ buses, and Vr is the rated voltage
of 1.0 per unit. The last objective f5 minimizes the voltage stability
index, which is defined as

f5 = VSI = max
j=1,…,npq
(Lj) , (7)

where the L-index of the jth PQ bus is calculated by

Lj = |1−
ng

∑
i=1

Fji
Vi

Vj
| , (8)

and Jacobian matrix F is obtained using the Y bus matrix
(Khunkitti et al., 2022).

In addition to the five objectives, a series of inequality
constraints need to be satisfied,which are defined based on the upper
and lower bounds of the corresponding variables. The generator
constraints include

PGmin
ng ≤ PGng

PGng ≤ PGmax
ng

QGmin
i ≤ QGi

QGi ≤ QG
max
i , i = 1,…,ng

, (9)

where PGng is the active power of slack bus and QGi is the reactive
power of the generator at bus i. Besides, the security constraints
include

Vmin
i ≤ Vi

Vi ≤ V
max
i , i = 1,…,npq

SLk ≤ SL
max
k , k = 1,…,nl

, (10)

where Vi is the voltage at the PQ bus i and SLk is the power flow of
the kth branch.

With the above decision variables, objectives, and constraints,
the MaOOPF problem considered in this work can be
mathematically written as

minimize f (x) = ( f1(x) , f2(x) ,…, f5(x))

subject to g(x) = (g1(x) ,…,gq(x)) ≤ 0

where x = (PG1,…,PGng−1,V1,…,Vng,T1,…,Tnt,

QC1,…,QCnc) ∈ X

X = {x ∣ l ≤ x ≤ u}

l = (PGmin
1 ,…,PG

min
ng−1,0.94,…,0.94ng,

0.9,…,0.9nt,0,…,0nc)

u = (PGmax
1 ,…,PG

max
ng−1,1.06,…,1.06ng,

1.1,…,1.1nt,5,…,5nc)

. (11)

This optimization model includes d = 2ng− 1+ nt+ nc continuous
decision variables with different ranges, five objectives, and
q = 2+ 2ng+ 2npq+ nl inequality constraints, which pose challenges
to existing optimizers. Therefore, a constrained many-objective co-
evolutionary algorithm is customized in the next section.

3 The proposed algorithm

The proposed algorithm, termed three-population based
constrained many-objective co-evolutionary algorithm (TPCMaO),
evolves three populations with different search behaviors. In this
section, we first give the general framework of the proposed
algorithm. Then, we elaborate on the key components of the
proposed algorithm, i.e., the selection strategies for the three
populations.
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FIGURE 2
The general framework of TPCMaO.

3.1 General framework of TPCMaO

To date, co-evolutionary algorithms have shown their
effectiveness in solving complex constrained optimization problems
in many works (Li et al., 2019b; Tian et al., 2021; Qiao et al.,
2022a; Sun et al., 2023). These algorithms often co-evolve multiple
populations, where one population is used to solve the original
problem and the other populations are used to solve helper
problems. However, as discussed in (Zhang et al., 2023), the
effectiveness of existing co-evolutionary algorithms is prone to be
affected, since they cannot always maintain the relatedness between
the helper problem and the original problem. Thus, to solve the
challenging MaOOPF problems, in this paper, we propose a three-
population based co-evolutionary many-objective evolutionary
algorithm TPCMaO. While TPCMaO co-evolves two populations
to solve the original problem and an unconstrained helper problem
that are not highly related, it also evolves one population to solve a
constraint-relaxed helper problem,which aims to enable the original
and helper problems to maintain a good relatedness.

Figure 2 depicts the general framework of the proposed
TPCMaO. For the three co-evolved populations, P1, P2, and
P3 are used to solve the original constrained problem foriginal,
unconstrained helper problem fhelper1, and constraint-relaxed helper
problem fhelper2, respectively. They adopt the same mating selection
strategy to obtain parent solutions and the same offspring
reproduction operator to generate offspring solutions, but they
differ with each other in obtaining the combined populations and
performing environmental selection.

Algorithm 1 presents the detailed procedure of TPCMaO. To
begin with, TPCMaO generates three initial populations with N
solutions in a random manner. After the three populations are
evaluated by foriginal, fhelper1, and fhelper2, respectively, TPCMaO enters
the main loop until termination. At each generation, TPCMaO
first uses the binary tournament selection method to obtain three
parent populations, namely, S1, S2, and S3. Based on the three
parent populations, three offspring populations O1, O2, and O3
are then generated using simulated binary crossover operator [Deb
and Agrawal (1995)] and polynomial mutation operator [Deb and
Goyal (1996)]. Next, TPCMaO combines parent and offspring
solutions to obtain three hybrid populations, namely, H1, H2,
and H3. Specifically, the combination of H1 is determined by the
ratio of feasible solutions in P2∪O2, H2 consists of the solutions

in P2, O2, and O1, and H3 is obtained by combining P3 and
O3. Afterwards, TPCMaO evaluates the solutions in H1, H2, and
H3 by foriginal, fhelper1, and fhelper2, respectively. Finally, TPCMaO
selects the populations for the next-generation from the combined
populations by three different environmental selection strategies.
That is, the problems foriginal, fhelper1, and fhelper2 are totally the
same except for the consideration of constraints. More specifically,
the original problem foriginal is defined in Eq. 1 without equality
constraints, the unconstrained helper problem fhelper1 is defined
as

minimize f (x) = ( f1(x) , f2(x) ,…, fm(x))

where x = (x1,x2,…,xd) ∈ X

X = {x ∣ l ≤ x ≤ u}

l = (l1, l2,…, ld) ,u = (u1,u2,…,ud)

, (12)

and the constraint-relaxed helper problem fhelper2 is defined
as

minimize f (x) = ( f1(x) , f2(x) ,…, fm(x))

subject to g(x) = (g1(x) ,…,gq(x)) ≤ ϵ

where x = (x1,x2,…,xd) ∈ X

X = {x ∣ l ≤ x ≤ u}

l = (l1, l2,…, ld) ,u = (u1,u2,…,ud)

, (13)

where ϵ is set according to (Fan et al., 2019).
When the number of function evaluations FE reaches the

maximum number of function evaluations FEmax, TPCMaO
terminates and selects N optimal solutions from P1∪ P3 as the
final results. In the following, we introduce the three environmental
selection strategies, which are the key components of the proposed
algorithm.

3.2 Environmental selection strategies of
TPCMaO

In the proposed algorithm, solutions in population P1 are
evaluated by foriginal considering all constraints, which enables the
algorithm to pay efforts to constraint satisfaction. By contrast,
solutions in population P2 are evaluated by fhelper1 without
considering any constraint, which enables solutions to cross
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Input: N (population size), FEmax (maximum number

of function evaluations)

Output: P (final population)

1:  [P1,P2,P3] ← Randomly generate N solutions to

initialize each population;

2:  Evaluate P1, P2, and P3 by foriginal, fhelper1, and

fhelper2, respectively;

3:  FE = 3N;

4:  while FE ≤ FEmax do

5:   [S1,S2,S3] ← Select N solutions from P1, P2,

and P3 by the binary tournament selection method,

respectively;

6:   O1← Generate N/2 offspring solutions based on

S1 by genetic operators;

7:   O2← Generate N/2 offspring solutions based on

S2 by genetic operators;

8:   O3← Generate N offspring solutions based on

S3 by genetic operators;

9:   FR← Calculate the ratio of feasible

solutions in P2∪O2;

10:   if FR > 0.5 then

11:    H1← P1∪O1∪P2∪O2;

12:   else

13:    H1← P1∪O1∪O2;

14:   end if

15:   H2← P2∪O2∪O1;

16:   H3← P3∪O3;

17:   Evaluate H1, H2, and H3 by foriginal, fhelper1,

and fhelper2, respectively;

18:   FE = FE+2N;

19:   P1← Select N solutions from H1 based on

constraint dominance principle;

20:   P2← Select N solutions from H2 based on

unconstraint dominance principle;

21:   P3← Select N solutions from H3 based on

ϵ-constraint dominance principle;

22:  end while

23:  return N optimal solutions in P1∪P3;

Algorithm 1. Procedure of the proposed TPCMaO.

through infeasible regions and converge to the Pareto front
quickly. Besides, with the purpose of finding more feasible regions,
solutions in population P3 are evaluated by fhelper2, which regards
solutions in constraint-relaxed boundaries as feasible solutions.
The above diversified purposes drive the proposed TPCMaO to
update populations P1, P2, and P3 via different environmental
selection strategies. More specifically, the evolution of the three
populations is based on the selection strategy of SPEA2 with
shift based density estimation (Li et al., 2014), which shows high
effectiveness in many-objective optimization and is flexible to be
embedded in other algorithms (Tian et al., 2020). On the other
hand, the difference in the selection strategies for the three
populations lies in the dominance relations, where the constraint

dominance principle, unconstraint dominance principle, and ϵ-
constraint dominance principle are used for populations P1, P2, and
P3, respectively.

In the case that population P1 is evolved for constraint
satisfaction, solutions that survive for the next-generation should be
those with smaller constraint violation values and better objective
values. For this aim, TPCMaO first calculates the ratio of feasible
solutions in P2∪O2. If the ratio of feasible solutions FR is larger
than 0.5, which means that the union of P2 and O2 potentially
contains high-quality feasible solutions beneficial to the evolution
of population P1, TPCMaO combines all solutions in P1, O1, P2,
andO2 to obtainH1. Otherwise, TPCMaO combines all solutions in
P1, O1, and O2 to obtain H1. Then, TPCMaO calculates the fitness
value of each solution in H1 by the method in (Li et al., 2014) and
selects N solutions with the smallest fitness values to form the new
population P1. It is worth noting that, in the process of calculating
fitness values, the dominance relations of solutions are determined
by the constraint dominance principle (Deb et al., 2002).

Considering that population P2 is evolved for driving solutions
to cross through infeasible regions and converge to the Pareto front
quickly, solutions that survive for the next-generation should be
thosewith better objective values.Thus, TPCMaOonly combinesO1
with P2 andO2, since offspring solutions inO1 are possibly of better
convergence than parent solutions in P1. Then, TPCMaO calculates
the fitness value of each solution in H2 by the method in (Li et al.,
2014) and selectsN solutions with the smallest fitness values to form
the new population P2. It is worth noting that, in the process of
calculating fitness values, the dominance relations of solutions are
determined by non-dominated sorting that does not consider any
constraint (Zhang et al., 2015a).

From Figure 2; Algorithm 1, it can be observed that population
P3 is evolved independently, which is different from populations
P1 and P2 that interact with each other frequently. That is, when
offspring population O3 is generated, it is directly combined
with parent population P3 to obtain hybrid population H3. Then,
TPCMaO calculates the fitness value of each solution in H3 by the
method in (Li et al., 2014) and selects N solutions with the smallest
fitness values to form the new population P3. It is worth noting that,
in the process of calculating fitness values, the dominance relations
of solutions are determined by the ϵ-constraint dominance principle
(Takahama and Sakai, 2006; Ji et al., 2022), which is different from
the methods used for populations P1 and P2. Specifically, given two
solutions x and y, if the constraint violation values of them are both
smaller than ϵ, the solution with better objective values dominates
the other one. Otherwise, the solution with a smaller constraint
violation value dominates the other one. In the proposed algorithm,
the value of ϵ is updated by the method suggested in (Fan et al.,
2019).

4 Experimental studies

In this section, the proposed algorithm is first compared
with state-of-the-art algorithms on challenging constrained many-
objective benchmark problems. Then, the proposed algorithm is
verified on MaOOPF problems. The experiments are conducted on
PlatEMO (Tian et al., 2017).
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TABLE 1 Statistics of three power systems.

Problem #Bus nodes #Decision variables #Generators #Shunt VAR compensators #Voltage regulating transformers #Branches

IEEE 30-bus 30 24 6 9 4 41

IEEE 57-bus 57 33 7 3 17 80

IEEE 118-bus 118 130 54 14 9 186

4.1 Experimental settings

Firstly, the proposed TPCMaO is compared with CCMO
(Tian et al., 2021), MTCMO (Qiao et al., 2022b), DCNSGA-III
(Jiao et al., 2021), TriP (Ming et al., 2022b), andCMME (Ming et al.,
2022a) on the 16 ZXH-CF (Zhou et al., 2020) benchmark problems.
In these test problems, the number of objectives m is set to 5, 8,
and 10, and the number of decision variables d is set to 10+m.
Then, the proposed TPCMaO is compared with the five competitors
on three power systems, namely, the IEEE 30-bus, IEEE 57-bus,
and IEEE 118-bus systems. Table 1 presents the statistics of the
three power systems, and the detailed information and related data
can be found from (Zimmerman et al., 2010; Zhang et al., 2019;
Premkumar et al., 2021). In the experiments, the performance on
the ZXH-CF benchmark problems is assessed by IGD (Zitzler et al.,
2003), and the performance on the power systems is measured
by HV (While et al., 2006). Besides, we take the Wilcoxon rank
sum test with a significance level of 0.05 to verify the difference
between compared algorithms and the proposed TPCMaO, where
the symbols +, −, and ≈ indicate that the result obtained by a
compared algorithm is significantly better, significantly worse, and
statistically similar to that of the proposed TPCMaO, respectively. In
the following, the detailed parameter settings are given.

(1) The maximum number of function evaluations FEmax is adopted
as the termination criterion, which is set to 50,000 and 80,000
for the experiments on benchmark problems and power systems,
respectively.

(2) The population size N is set to 100 for each algorithm on all test
instances.

(3) All the compared algorithms adopt simulated binary crossover
(Deb and Agrawal, 1995) and polynomial mutation (Deb and
Goyal, 1996) for offspring generation. The crossover probability
is set to 1, the mutation probability is set to 1/d with d denoting
the number of decision variables, and the distribution index of
both crossover and mutation is set to 20.

(4) The algorithm-specific parameters in the compared algorithms
are set to the same as those in their original papers, while
the proposed TPCMaO does not have any algorithm-specific
parameter.

4.2 Experimental results on ZXH-CF
problems

The 16 ZXH-CF benchmark problems are scalable to have any
number of objectives and decision variables, posing challenges
to existing algorithms in evolving towards the constrained

Pareto fronts. Besides, they present difficulties by introducing
convergence-hardness related constraints and diversity-hardness
related constraints. More specifically, the convergence-hardness
related constraints introduce infeasible barriers in approaching the
optimums, and the diversity-hardness related constraints restrict
the feasible optimal regions to make the benchmark problems have
different shapes of Pareto fronts.

Table 2 presents the IGD results obtained by CCMO, MTCMO,
DCNSGA-III, TriP, CMME, and the proposed TPCMaO on the 16
ZXH-CF problems with 5, 8, and 10 objectives. As shown in the
table, TPCMaO achieves the best overall performance, obtaining
45 best results out of the 48 test instances. By contrast, CCMO,
MTCMO, andDCNSGA-III only obtain one best result, respectively,
while TriP and CMME do not obtain any best result. According
to the Wilcoxon rank sum test results, the proposed TPCMaO
outperforms CCMO, MTCMO, DCNSGA-III, TriP, and CMME
on 46, 46, 45, 48, and 47 problems, respectively, which indicates
that the proposed TPCMaO is significantly better than state-of-the-
art algorithms in solving constrained many-objective optimization
problems.

For visual comparisons, Figure 3 depicts the parallel coordinates
of Pareto fronts obtained by CCMO, MTCMO, DCNSGA-III, TriP,
CMME, and the proposed TPCMaO on 5-objective ZXH-CF2, in
the run associated with the median IGD value. It can be seen
that the Pareto fronts obtained by DCNSGA-III, CMME, and the
proposed TPCMaO are obviously better than those obtained by
CCMO, MTCMO, and TriP in terms of both convergence and
diversity. Besides, the Pareto front approximated by TPCMaO has
better diversity than those obtained by DCNSGA-III and CMME. In
short, the proposed TPCMaO exhibits the best performance among
the six compared algorithms.

4.3 Experimental results on power systems

Table 3 presents the HV results obtained by CCMO, MTCMO,
DCNSGA-III, TriP, CMME, and the proposed TPCMaO on the
MaOOPF problems of the IEEE 30-bus, IEEE 57-bus, and IEEE 118-
bus systems. It can be seen that TPCMaO exhibits the best overall
performance, obtaining the best results on the IEEE 57-bus and IEEE
118-bus systems, followed byTriP gaining the best result on the IEEE
30-bus system. According to the Wilcoxon rank sum test results,
TPCMaO is not worse than the five competitors on any test instance.
By contrast, TPCMaO is significantly better than CCMO,MTCMO,
DCNSGA-III, TriP, and CMME on 3, 3, 3, 2, and 3 test instances,
respectively.

Figures 4–6 depict the parallel coordinates of Pareto fronts
obtained by each algorithm on the IEEE 30-bus, IEEE 57-bus,
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TABLE 2 IGD results obtained by CCMO, MTCMO, DCNSGA-III, TriP, CMME, andTPCMaO on the ZXH-CF benchmark problems. The best result in each row is
highlighted.

Problem M D CCMO MTCMO DCNSGA-III TriP CMME TPCMaO

ZXH-CF1 5 15 4.3632e-1 (7.40e-2) − 4.6453e-1 (9.18e-2) − 1.4882e-1 (3.69e-3) − 3.0346e-1 (4.48e-2) − 1.5207e-1 (1.26e-2) − 1.2817e-1 (1.15e-3)

8 18 1.0626e+0 (7.71e-2) − 1.0501e+0 (4.97e-2) − 2.5078e-1 (4.66e-2) − 8.9726e-1 (2.20e-1) − 2.3230e-1 (2.32e-2) − 2.0976e-1 (2.06e-3)

10 20 1.1002e+0 (3.93e-2) − 1.1262e+0 (3.73e-2) − 3.7169e-1 (4.75e-2) − 9.4996e-1 (2.19e-1) − 3.3670e-1 (3.52e-2) − 2.4315e-1 (2.80e-3)

ZXH-CF2 5 15 4.5350e-1 (3.88e-1) − 5.7341e-1 (4.77e-1) − 3.6382e-1 (2.80e-1) − 4.1463e-1 (7.20e-2) − 4.0417e-1 (3.38e-1) − 2.4425e-1 (3.02e-2)

8 18 1.8042e+0 (7.74e-2) − 1.8659e+0 (9.36e-2) − 7.1315e-1 (4.80e-1) − 1.2396e+0 (1.77e-1) − 5.4492e-1 (2.41e-1) − 4.1939e-1 (4.91e-2)

10 20 1.9278e+0 (8.03e-2) − 1.9395e+0 (4.71e-2) − 1.2034e+0 (4.48e-1) − 1.5132e+0 (3.17e-1) − 7.7786e-1 (4.05e-1) − 5.2326e-1 (2.76e-2)

ZXH-CF3 5 15 3.8545e-1 (1.65e-2) − 3.7976e-1 (1.62e-2) − 3.7766e-1 (2.31e-2) − 3.2066e-1 (1.37e-2) − 3.2048e-1 (1.83e-2) − 2.5957e-1 (7.01e-3)

8 18 1.5095e+0 (2.24e-1) − 1.4897e+0 (2.15e-1) − 6.1471e-1 (3.36e-2) − 5.5422e-1 (2.50e-2) − 8.2691e-1 (1.06e-1) − 4.5343e-1 (9.15e-3)

10 20 1.9105e+0 (5.55e-1) − 1.9483e+0 (3.90e-1) − 6.9078e-1 (1.77e-2) − 6.3685e-1 (3.19e-2) − 7.1726e-1 (3.74e-2) − 5.0229e-1 (7.28e-3)

ZXH-CF4 5 15 5.8065e-1 (4.33e-1) − 6.4659e-1 (3.86e-1) − 4.1159e-1 (1.15e-1) − 5.1962e-1 (2.85e-1) − 4.5111e-1 (1.77e-1) − 2.9711e-1 (1.63e-1)

8 18 1.7118e+0 (5.98e-1) − 1.7583e+0 (6.87e-1) − 8.8732e-1 (3.68e-1) − 1.3583e+0 (4.92e-1) − 8.4384e-1 (1.87e-1) − 4.8047e-1 (1.22e-1)

10 20 2.1304e+0 (8.23e-1) − 2.3121e+0 (8.52e-1) − 1.1215e+0 (6.30e-1) − 1.8554e+0 (9.55e-1) − 7.9480e-1 (2.17e-1) − 5.6570e-1 (1.13e-1)

ZXH-CF5 5 15 6.3194e-1 (4.22e-1) − 7.0617e-1 (5.77e-1) − 5.0572e-1 (4.85e-1) − 2.3608e-1 (9.77e-2) − 3.9991e-1 (3.13e-1) − 1.7416e-1 (1.29e-2)

8 18 8.4734e-1 (6.09e-1) − 8.3893e-1 (7.09e-1) − 5.7661e-1 (5.69e-1) − 4.0041e-1 (2.97e-1) − 6.5728e-1 (7.33e-1) − 2.6283e-1 (2.31e-2)

10 20 1.1513e+0 (8.75e-1) − 1.1206e+0 (9.21e-1) − 6.5911e-1 (7.78e-1) − 5.2074e-1 (1.90e-1) − 9.4914e-1 (1.10e+0) − 4.0482e-1 (2.27e-1)

ZXH-CF6 5 15 1.7359e-1 (4.27e-3) ≈ 1.7436e-1 (5.54e-3) ≈ 2.0220e-1 (1.02e-2) − 1.7855e-1 (3.61e-3) − 1.9864e-1 (7.39e-3) − 1.7436e-1 (6.54e-3)

8 18 2.8227e-1 (1.89e-2) − 2.8035e-1 (1.70e-2) − 3.5757e-1 (4.21e-2) − 2.7454e-1 (1.27e-2) − 3.3612e-1 (3.97e-2) − 2.6373e-1 (6.98e-3)

10 20 5.1984e-1 (4.56e-2) − 5.1577e-1 (4.58e-2) − 4.5526e-1 (7.45e-3) − 4.3412e-1 (3.24e-2) − 4.5009e-1 (2.56e-2) − 3.2510e-1 (6.75e-3)

ZXH-CF7 5 15 4.3640e-1 (1.22e-1) − 3.3062e-1 (1.27e-1) − 1.3248e-1 (4.29e-2) − 2.7515e-1 (1.51e-1) − 1.8626e-1 (6.64e-2) − 1.1254e-1 (3.99e-2)

8 18 4.4640e-1 (1.33e-1) − 4.1632e-1 (1.08e-1) − 2.0280e-1 (1.49e-1) ≈ 4.0531e-1 (1.64e-1) − 1.4876e-1 (9.85e-2) ≈ 1.3092e-1 (5.63e-2)

10 20 4.7944e-1 (7.43e-2) − 5.6102e-1 (8.96e-2) − 4.2372e-1 (2.12e-1) − 4.1009e-1 (1.26e-1) − 1.8645e-1 (9.85e-2) − 1.3381e-1 (4.81e-2)

ZXH-CF8 5 15 2.5217e-1 (1.78e-2) − 2.6795e-1 (4.30e-2) − 2.0028e-1 (8.31e-3) − 3.0301e-1 (2.30e-2) − 1.8452e-1 (4.24e-3) − 1.6069e-1 (2.74e-3)

8 18 8.8317e-1 (1.54e-1) − 8.4929e-1 (1.74e-1) − 3.3522e-1 (2.49e-1) − 4.6417e-1 (3.51e-2) − 2.9022e-1 (6.17e-2) − 2.1198e-1 (1.13e-2)

10 20 1.1894e+0 (1.63e-1) − 1.2453e+0 (2.20e-1) − 1.4623e+0 (5.81e-1) − 8.3338e-1 (1.12e-1) − 4.4651e-1 (5.93e-2) − 3.2297e-1 (9.92e-3)

ZXH-CF9 5 15 2.1781e-1 (5.92e-3) − 2.0764e-1 (6.15e-3) − 3.2595e-1 (3.79e-2) − 2.2173e-1 (9.11e-3) − 2.8788e-1 (4.19e-2) − 1.8754e-1 (8.65e-3)

8 18 6.2318e-1 (4.63e-2) − 5.8129e-1 (5.08e-2) − 5.8991e-1 (4.77e-2) − 5.2488e-1 (2.78e-2) − 8.5583e-1 (9.01e-2) − 3.7207e-1 (1.34e-2)

10 20 1.4322e+0 (1.75e-1) − 1.4686e+0 (3.22e-1) − 6.9641e-1 (1.72e-2) − 6.2376e-1 (5.51e-2) − 7.2716e-1 (2.33e-2) − 4.8027e-1 (1.01e-2)

ZXH-CF10 5 15 4.3057e-1 (3.84e-1) − 4.3213e-1 (3.06e-1) − 4.2455e-1 (1.71e-1) − 4.5423e-1 (2.31e-1) − 5.0031e-1 (2.41e-1) − 2.4796e-1 (9.43e-2)

8 18 1.4099e+0 (6.92e-1) − 1.3382e+0 (7.27e-1) − 8.9849e-1 (5.08e-1) − 1.0254e+0 (5.56e-1) − 8.8395e-1 (1.86e-1) − 4.7245e-1 (1.88e-1)

10 20 1.8446e+0 (6.81e-1) − 2.2108e+0 (9.07e-1) − 8.5763e-1 (4.19e-1) − 1.7140e+0 (6.39e-1) − 1.0560e+0 (6.56e-1) − 6.1167e-1 (3.67e-1)

ZXH-CF11 5 15 1.8433e-1 (4.49e-3) + 1.8379e-1 (6.18e-3) + 1.8439e-1 (2.27e-2) + 2.0706e-1 (5.92e-3) − 2.1181e-1 (3.70e-2) − 1.8918e-1 (4.64e-3)

8 18 1.2868e+0 (1.88e-1) − 1.3002e+0 (3.09e-1) − 3.6721e-1 (5.34e-2) − 7.6526e-1 (1.09e-1) − 4.0327e-1 (2.73e-2) − 3.1860e-1 (2.66e-3)

10 20 1.8079e+0 (2.59e-1) − 1.8441e+0 (2.54e-1) − 5.4736e-1 (3.75e-2) − 1.3393e+0 (2.30e-1) − 5.1047e-1 (1.85e-2) − 4.4043e-1 (2.90e-3)

ZXH-CF12 5 15 4.8990e-1 (1.47e-1) − 5.6246e-1 (2.14e-1) − 2.3179e-1 (1.96e-1) − 2.8805e-1 (6.76e-2) − 2.6993e-1 (1.53e-1) − 1.1416e-1 (1.91e-2)

8 18 7.9516e-1 (1.19e-1) − 8.4197e-1 (6.93e-2) − 3.5634e-1 (1.34e-1) − 6.3308e-1 (9.50e-2) − 3.3441e-1 (1.06e-1) − 2.2240e-1 (4.15e-2)

10 20 9.0929e-1 (7.59e-2) − 9.6265e-1 (5.51e-2) − 6.5145e-1 (1.46e-1) − 7.1226e-1 (2.12e-1) − 3.9470e-1 (8.95e-2) − 2.8947e-1 (6.98e-2)

ZXH-CF13 5 15 5.8142e-1 (3.84e-1) − 6.8631e-1 (3.35e-1) − 2.4845e-1 (3.92e-2) ≈ 5.0222e-1 (9.92e-2) − 3.7221e-1 (1.84e-1) − 3.0904e-1 (9.40e-2)

8 18 1.7846e+0 (9.80e-2) − 1.8707e+0 (5.77e-2) − 8.0260e-1 (3.55e-1) − 1.5459e+0 (2.70e-1) − 7.1779e-1 (2.90e-1) − 4.6949e-1 (7.99e-2)

10 20 1.9061e+0 (7.06e-2) − 1.9656e+0 (4.21e-2) − 1.1788e+0 (1.86e-1) − 1.8712e+0 (1.82e-1) − 7.1032e-1 (2.88e-1) − 5.3798e-1 (9.86e-2)

(Continued on the following page)
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TABLE 2 (Continued) IGD results obtained by CCMO, MTCMO, DCNSGA-III, TriP, CMME, andTPCMaO on the ZXH-CF benchmark problems. The best result in each
row is highlighted.

Problem M D CCMO MTCMO DCNSGA-III TriP CMME TPCMaO

ZXH-CF14 5 15 5.5262e-1 (8.45e-2) − 5.5664e-1 (1.08e-1) − 1.5296e-1 (3.41e-3) − 3.6988e-1 (4.30e-2) − 1.6218e-1 (5.76e-3) − 1.2411e-1 (1.47e-3)

8 18 1.0456e+0 (4.65e-2) − 1.0699e+0 (3.59e-2) − 2.4731e-1 (4.72e-2) − 7.9042e-1 (1.28e-1) − 2.6486e-1 (3.01e-2) − 2.0858e-1 (2.91e-3)

10 20 1.0915e+0 (5.47e-2) − 1.1347e+0 (4.62e-2) − 4.7895e-1 (1.27e-1) − 9.9178e-1 (1.96e-1) − 3.7316e-1 (3.70e-2) − 2.5187e-1 (4.16e-3)

ZXH-CF15 5 15 5.1896e-1 (4.91e-1) − 3.9399e-1 (3.62e-1) − 4.6529e-1 (3.45e-1) − 2.7907e-1 (3.27e-2) − 5.0692e-1 (4.39e-1) − 2.6981e-1 (1.46e-1)

8 18 1.2452e+0 (4.04e-1) − 1.4454e+0 (6.60e-1) − 1.0762e+0 (9.71e-1) − 6.9733e-1 (3.74e-1) − 8.7725e-1 (5.78e-1) − 4.4048e-1 (6.81e-2)

10 20 1.9568e+0 (7.64e-1) − 2.0191e+0 (7.72e-1) − 7.9518e-1 (2.62e-1) − 1.0046e+0 (7.41e-1) − 9.2418e-1 (6.52e-1) − 5.1675e-1 (2.04e-2)

ZXH-CF16 5 15 2.8507e-1 (1.01e-2) − 2.8237e-1 (1.03e-2) − 3.5424e-1 (1.63e-2) − 2.7956e-1 (9.59e-3) − 3.0453e-1 (3.73e-2) − 2.6107e-1 (1.20e-2)

8 18 1.1435e+0 (2.26e-1) − 1.0909e+0 (1.21e-1) − 6.4482e-1 (4.59e-2) − 5.2127e-1 (3.23e-2) − 7.0882e-1 (5.02e-2) − 4.5707e-1 (1.04e-2)

10 20 1.5257e+0 (3.02e-1) − 1.5732e+0 (3.49e-1) − 7.5120e-1 (2.76e-2) − 6.3751e-1 (1.14e-1) − 7.6881e-1 (2.39e-2) − 5.3698e-1 (1.37e-2)

+/−/≈ 1/46/1 1/46/1 1/45/2 0/48/0 0/47/1

FIGURE 3
The parallel coordinates of Pareto front obtained by each algorithm on 5-objective ZXH-CF2 in the run associated with the median IGD value.

and IEEE 118-bus systems. In comparison with CCMO, MTCMO,
DCNSGA-III, andTriP, the Pareto fronts approximated by TPCMaO
on the three instances are obviously better in terms of both
convergence and diversity. Compared with CMME, TPCMaO
obtains competitive results on the IEEE 30-bus and IEEE 57-bus
systems and slightly worse result on the IEEE 118-bus system.

Figure 7 plots the convergence curves with median HV values
obtained by TPCMaO and five compared algorithms on the three
instances. On the IEEE 30-bus system, TPCMaO and TriP exhibit
obviously better convergence performance than the other four
algorithms. Although the convergence efficiency of TPCMaO is
a bit inferior to TriP on the IEEE 30-bus system, TPCMaO
achieves competitive result at the end of evolution. On the IEEE

57-bus and IEEE 118-bus systems, it can be seen that TPCMaO
achieves obviously better convergence performance than the five
compared algorithms. It is worth noting that, on the IEEE 118-
bus system, DCNSGA-III and TriP do not obtain any feasible
solutions until termination; thus, their convergence curves are
unavailable.

To provide a more detailed analysis of experimental results
obtained by TPCMaO and compared algorithms, Table 4 lists the
result obtained by each algorithm on each objective of the IEEE
57-bus system. As shown in the table, TPCMaO obtains the
best results on the objectives of TFC and APL in terms of both
minimum and mean values. By contrast, MTCMO and DCNSGA-
III obtain the best results on VMD and VSI, respectively, and
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TABLE 3 HV results obtained by CCMO, MTCMO, DCNSGA-III, TriP, CMME, and the proposedTPCMaO on the IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems.
The best result in each row is highlighted.

Problem M D CCMO MTCMO DCNSGA-III TriP CMME TPCMaO

IEEE 30-bus 5 24 2.4253e-1 (1.61e-3) − 2.4328e-1 (1.29e-3) − 2.3911e-1 (2.14e-3) − 2.4723e-1 (1.11e-3) ≈ 2.3248e-1 (3.43e-3) − 2.4666e-1 (1.26e-3)

IEEE 57-bus 5 33 1.4318e-1 (1.12e-2) − 1.4631e-1 (3.88e-3) − 1.4456e-1 (4.88e-3) − 1.3987e-1 (6.66e-3) − 1.4543e-1 (3.33e-3) − 1.6018e-1 (1.38e-3)

IEEE 118-bus 5 130 4.5277e-1 (1.25e-2) − 4.6658e-1 (1.99e-2) − 3.0861e-1 (7.67e-2) − 4.6375e-1 (1.29e-2) − 5.1217e-1 (6.03e-3) − 5.6431e-1 (1.18e-2)

+/−/≈ 0/3/0 0/3/0 0/3/0 0/2/1 0/3/0

FIGURE 4
The parallel coordinates of Pareto front obtained by each algorithm on the IEEE 30-bus system in the run associated with the median HV value.

FIGURE 5
The parallel coordinates of Pareto front obtained by each algorithm on the IEEE 57-bus system in the run associated with the median HV value.
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FIGURE 6
The parallel coordinates of Pareto front obtained by each algorithm on the IEEE 118-bus system in the run associated with the median HV value.

FIGURE 7
Convergence curves with the median HV values obtained by CCMO, MTCMO, DCNSGA-III, TriP, CMME, and the proposed TPCMaO on the IEEE
30-bus, IEEE 57-bus, and IEEE 118-bus systems. FE denotes the number of function evaluations.

TABLE 4 Objective values obtained by CCMO,MTCMO, DCNSGA-III, TriP, CMME, andTPCMaO on the IEEE 57-bus system.The best result in each row is highlighted.

Objective CCMO MTCMO DCNSGA-III TriP CMME TPCMaO

Min Mean Min Mean Min Mean Min Mean Min Mean Min Mean

TFC ($/h) 41,776 48,505 41,740 48,702 41,923 43,709 41,709 47,606 42,444 43,329 41,709 42,019

TE (ton/h) 1.2478 1.7757 1.3806 1.9092 1.1717 1.4760 1.1155 1.5266 1.1551 1.2557 1.1933 1.5616

APL (MW) 13.5070 20.3310 15.1875 22.0087 12.4466 16.0241 11.3832 20.6923 12.0154 13.4302 10.9192 13.0974

VMD (p.u.) 0.2016 0.2579 0.1809 0.2432 0.2034 0.3168 0.2090 0.3525 0.2050 0.2777 0.2885 0.4890

VSI (p.u.) 0.2813 0.2857 0.2801 0.2855 0.2777 0.2853 0.2784 0.2881 0.2782 0.2863 0.2807 0.2883

the remaining two algorithms obtain competitive results on the
objective of TE. In short, none of the six algorithms can obtain the
best results on all objectives, since the five objectives have distinct

difference in terms of numerical magnitude, which is prone to
cause search bias. However, it can still be seen that the proposed
TPCMaO obtains the best overall performance among the six
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algorithms. To summarize, the proposed algorithm is superior over
state-of-the-art constrained many-objective evolutionary
algorithms on both benchmark problems and MaOOPF problems.

5 Conclusion

Optimal power flow with many objectives and constraints plays
an important role in power systems. To address this challenging
optimization task, in this paper, we have proposed a new co-
evolutionary constrained many-objective evolutionary algorithm,
where three populations are co-evolved with different purposes.
Specifically, the first population is evolved for obtaining the Pareto
front, the second population is evolved for improving the speed of
convergence, and the third population is evolved for finding more
feasible regions. The three populations explore different parts of
the high-dimensional objective space divided by large infeasible
regions, striking a good balance between convergence, diversity,
and feasibility for solving constrained many-objective optimization
problems.

Experimental results on both benchmark problems and
MaOOPF problems reveal that the proposed algorithm achieves
better overall performance than five state-of-the-art competitors.
However, while the proposed algorithm obtains better results on
some objectives, it also shows slightly worse performance on some
other objectives, such as VMD and VSI. Thus, in the future, we
prepare to design novel strategies to alleviate the search bias,
which is beneficial for decision-makers to consider all objectives
comprehensively. Furthermore, it is also desirable to use the
proposed algorithm to conduct cascading failures in power systems
(Fang et al., 2021).
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