
 

 Page 1 of 1 

FedUni ResearchOnline 
https://researchonline.federation.edu.au 
Copyright Notice 

 

This is the peer-reviewed version of the following article: 

 

Kong, X., Shi, Y., Wang, W., Ma, K., Wan, L., & Xia, F. (2019). The Evolution of Turing Award 
Collaboration Network: Bibliometric-Level and Network-Level Metrics. IEEE Transactions on 
Computational Social Systems, 6(6), 1318–1328.  

 

Which has been published in final form at: 

https://doi.org/10.1109/TCSS.2019.2950445 

 

Copyright © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

 

CRICOS 00103D RTO 4909   

https://researchonline.federation.edu.au/
https://doi.org/10.1109/TCSS.2019.2950445


IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

The Evolution of Turing Award Collaboration
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Abstract—The year of 2017 for the fiftieth anniversary of
the Turing Award, which represents the top level award in
the computer science field, is a milestone. We study the long-
term evolution of the Turing Award Collaboration Network and
it can be considered as a microcosm of the computer science
field from 1974 to 2016. Firstly, scholars tend to publish papers
by themselves at the early stages and they began to focus on
tight collaboration since the late 1980s. Secondly, compared with
the same scale random network, although the Turing Award
Collaboration Network has small-world properties, it is not a
scale-free network. The reason may be the limited number of
collaborators for each scholar. It is impossible for scholars to
connect to others freely (preferential attachment) as the scale-
free network. Thirdly, to measure how far a scholar is from the
Turing Award, we propose a metric called the Turing Number
and find that the Turing Number decreases gradually over time.
Meanwhile, we discover the phenomenon that scholars prefer
to gather into groups to do research with the development of
computer science. Our work presents a new way to explore
the evolution of academic collaboration network in the field of
computer science by building and analyzing the Turing Award
Collaboration Network for decades.

Index Terms—Turing Award Collaboration Network, network
dynamics, bibliometric-level metrics, network-level metrics, Tur-
ing Number

I. INTRODUCTION

COMPUTER science is a diverse field which is full of
academic activities, including plenty of partitions. There

are many prizes to commemorate computer scientists who have
made outstanding contributions to the computer science field.
The ACM A. M Turing Award which is established by the
Association for Computing Machinery (ACM) and gains the
title of “computer field’s Nobel Prize” [1], has a far-reaching
influence so far. It is meaningful to study computer science
from the perspective of the Turing Award. However, compared
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to the Nobel Prize, the research of the Turing Award is
relatively incomprehensive. There exist several works devoted
to studying relevant attributes of the Nobel Prize [2] and the
Nobel Prize laureates [3] while the research of the Turing
Award is particularly rare. As the highest prize in the field of
computer science, we believe that the analysis of the Turing
Award can highlight the important contributions of the Turing
Award laureates. It is also beneficial to motivate the younger
generation of computer scientists to fulfill their values [4].

In order to analyze the Turing Award, we propose to study
the collaboration network related to the Turing Award laure-
ates. The study of scientific collaboration networks helps us to
further understand knowledge production and innovation. Sci-
entific collaboration networks have received growing attention
in recent years [5]. Scientific collaboration is a key approach to
promote the progress of computer science because it can gather
data and resources to boost the collaborative development
of knowledge production. The collaboration network is built
from the list of published papers by treating the authors as
connecting nodes if scholars write one or more papers jointly.
In the view of a collaborative point, these networks have
revealed patterns of collaboration and research behaviors in
different areas [5].

There is an important way to analyze collaboration network
besides the computer science field. In the field of mathematics,
scholars can adopt the Erdös Number (EN ) to measure the
distance from any mathematician to the far-reaching mathe-
matician through a series of coauthors. It signifies mathemati-
cians’ nearness to the great scientist Erdös. Afterward, some
authors analyze the pattern of the Erdös collaboration graph
[6]. Inspirationally, we intend to form a collaboration network
of the top-level authors of the computer science to analyze
the evolution process of the collaboration network. However,
in the era of Turing, scientists are not as collaborative as
current scholars. Based on the existing digital library, it is
found that Turing had no collaborators on publishing papers
so that no one can connect to him directly in the collaboration
network. Therefore, we attempt to find a similar and alternative
scientist. It is difficult to measure and find the most prestigious
scientist in computer science. To this end, we can consider the
Turing Award laureates as an alternative approach. We present
the Turing Number (TN ) to measure the distance of a given
scholar to the Turing Award laureates in the network. Unlike
the first two metrics, the apparent difference of our proposed
metric is that we measure the distance from a certain scholar
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to the group of the Turing Award laureates, while the first two
metrics are the distances to a specific person.

One of the most popular methods for analyzing network
evolution is the bibliometric-level approach, which focuses on
the quantitative and qualitative results of scientific research
activities. The analysis of the bibliometric-level approach is
usually based on measurable descriptions of scientific out-
comes, including authorship, publications, and citations [7].
Subsequently, it has collected collaborative data to explore
complex structures of contact in various fields.

Another widely used method for studying the network is
the network-level analysis which has been extensively applied
in collaboration network analysis [8]. Many studies propose
several network-level metrics [9], such as the measure of
degree, variety of centrality, and diameter. Some studies fo-
cus on describing structural properties through metrics, e.g.,
clustering coefficient [10], while others explore more complex
problems to analyze, such as the detection of community
hubs [11] and the determination of the priority attachment
mechanism [12], [13]. Some authors attempt to identify the
structure of small-world [14] or the property of scale-free
[15]. Others propose new measures to assess the scientific
collaboration [16]. Some papers study scientific collaborations
focus on network changing over time [17], [18]. Comparing
with them, our paper mainly focuses on collaboration network
of the top-level authors of the computer science rather than
general computer science collaboration network. There are
plenty of studies focusing on computer science [19]–[21].
Recently, specific group (top active) collaboration [21] is
investigated in the field of computer science. However, there
are few studies focusing on Turing Award laureates. Our
results show the same conclusion in some respects and the
details are introduced in results and discussion part.

In this paper, we characterize the network evolution in com-
puter science. Firstly, we regard all the Turing Award laureates
as a group to establish the network called the Turing Award
Collaboration Network. It is our aims to comprehend the
structure of the entire computer science collaboration network.
Then, we analyze the dynamics over a long-time period (42
years). Moreover, we intend to discover the correlation of the
distance to Turing Award (Turing Number) and other consid-
ered metrics. To achieve this goal, we adopt the data from the
open source of the DBLP to incorporate the paper information
into the across-the-board collection of evolved network data.
We also conduct many in-depth statistical analysis.

Based on the bibliometric-level metrics the development of
computer science is abstracted as the collaboration evolution
network centering on the Turing Award laureates. The network
evolution is described both at the bibliometric level and
network level. In addition, we compare calculated metrics with
the same-scale random network to eliminate the impact of
network dimensions.

Contribution. To the best of our knowledge, this work is
the early study of computer science Network focused on the
Turing Award. The main contributions of this study are as
follows:
• We present a new approach to establishing the collabo-

ration network in the field of computer science centering

on the Turing Award laureates.
• We propose a metric called Turing Number to measure

the distance between scholars and the Turing Award.
• We provide a comprehensive analysis of the network in

conjunction with the bibliometric-level and network-level
metrics.

• Finally, we analyze the correlation of the calculated
metrics and Turing Number to explore the scholars’
properties related to the Turing Award.

Fig. 1: The process of the evolution research.

II. METHOD

In this section, we will introduce the methods used in the
research process. These methods include data acquirement,
collaboration network construct and some analysis metrics.
The overall structure diagram of the study is shown in the
Fig. 1.

A. Data Acquirement

To study the evolution of the Turing Award Collaboration
Network comprehensively, we collect available DBLP dataset
in public. DBLP is a literature dataset of computer science
that records information in regard to global computer science
research. The personal bibliographic records the scientific
achievements of a researcher in one’s career. The entire DBLP
dataset is stored in an XML form, and it can be downloaded
from the website (http://dblp.uni-trier.de/xml/). The dataset
contains 3,297,544 bibliographies of 1,735,884 authors from
1971 to 2016. The data involves a variety of categories, but
we only focus on journal and conference papers whose labels
are “article”, “inproceeding” and “proceeding”. These three
categories of papers have been verified to reflect the progress
of computer science prominently [22].

To exclude those scholars who leave the academia at the
early career, for instance, the newly graduated students, we
screen the data. We remove scholars with less than 5,8,10
papers respectively and we find that they do not affect the final
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result. Finally, we select to remove scholars who published
less than 10 papers, gaining 2,796,297 papers and 192,650
authors. In addition, we remove papers with more than 100
co-authors in view of the fact that such collaboration with so
many authors show a weak social relationship [23]. If these
authors are not excluded, it would be very unreasonable for
these authors to form a fully connected graph when building
a collaboration network.

B. Turing Award Collaboration Network

When the data is obtained, we establish the collaboration
network associated with the Turing Award laureates. We regard
an author as a node and a co-published article as an edge.
The number of common publications can be measured by
the weights of links. It can cause changes in the network,
mainly because their growth involves the dynamic interaction
of links and weights, as well as some possible elements of
accelerated growth [24]. The network allows new links to
appear among existing nodes. However, we focus more on the
increasing scale of the collaboration network and the distances
of authors to the Turing Award in this research, so we choose
the unweighted network, i.e., if two authors publish an article
together, there will be an edge between them.

We treat all the Turing Award laureates as a group and then
we set their number to 0. The rest of the scholars are assigned a
sequence number starting at 1. If an author collaborates with
any Turing Award laureate, he/she will be considered to be
connected to the Turing Award. Intuitively, a Turing Award
laureate is added to the Turing Award group in the year he/she
won the Turing Award, while a scholar joins the network when
the scholar began publishing articles. There are one or two
laureates to join the Turing Award group each year. In addition,
we explore the evolution of the network and investigate the
rapid development of the computer science field.

Due to the marginal number of nodes in the early years, we
regard 1974 as the starting year for exploration. Since some
authors never collaborate with other authors, we ignore the
isolated nodes of the network. Due to the tiny number of
isolated nodes, it hardly affects the experimental results by
deleting isolated nodes. In other words, we only consider the
largest connected subgraph of the network. Eventually, we ob-
tain the maximum connected graph related to the Turing Award
group, which is named as the Turing Award Collaboration
Network. The network is shortened as the Turing Network
in the following paragraphs. Furthermore, we put each year
as a unit to establish the time-series cumulative collaboration
network separately. We also document the annual changes in
the authors’ properties and their collaborations in the Turing
Award Collaboration Network.

C. Random Network

Intuitively, many of calculated metrics for the Turing Award
Collaboration Network are correlated with the size of the
network during the year. Therefore, the annual change in
metrics is not surprising. A more essential trend is to eliminate
the correlation of metrics and network size so as to deepen our
understanding for the internal changes of the Turing Network.

The method we choose is to compare the Turing Network to
the random network with the changes of the network’s size.
Therefore, in order to better reflect the network characteristics
and to eliminate the scale effects concurrently, we construct a
random network with the same number of nodes and edges as
the Turing Network.

We select the most classic Erdős-Rényi(ER) Random Net-
work [25], which is built via the number of nodes n and
edges m, G(n,m). The network is constructed by the following
steps: (a) Initialize a given number of nodes n and edges
m, (b) Select a pair of different nodes randomly without
edges and add an edge, (c) Repeat step (b) until m edges
in the network. Through the method above, we construct a
random network that retains the number of nodes and edges
of the Turing Award Collaboration Network. We expect to
exclude the correlation of the Turing network scale through
its equivalent random network.

In the sections of the later part of the paper, ER Random
Network is used as the experimental control group for our
evaluation. The ”Real Value” mentioned in all the result
diagrams in this paper is the analysis result of the Turing
Award Collaboration Network constructed by us. Meanwhile,
”Random Value” refers to the result obtained through the
analysis of ER Random Network.

D. Analysis Method

In this paper, we analyze the Turing Award Collaboration
Network by the bibliometric-level and network-level methods.

1) Bibliometric-level Metrics: To comprehensively under-
stand the authors’ outcomes and the evolution of the col-
laboration pattern, we have selected some typical metrics
which are widely applied in related works [26], [27]. Common
bibliometric-level metrics are as follows:
• Number of authors: The metric describes the numbers

of authors who publish papers every year. We remove
scholars who published less than 10 papers, eventually
obtaining 2,796,297 papers and 192,650 authors.

• Number of papers: This metric shows the number of
papers published every year. We have utilized the papers
from 1974 to 2016.

• Mean papers per author: This metric explores the
author’s average productivity.

• Mean authors per paper: For this measure, we explore
the average number of authors in each article.

• Collaboration: Here, we consider the percentage of the
different types of papers (one-, two-, three- and multi-
authored papers).

• Collaborator: This measure is related to the percentage
of authors who tend to collaborate with others in pub-
lishing papers.

2) Network-level Metrics: In the network-level analysis, the
Turing Award Collaboration Network is investigated based on
the macro and micro metrics. The former is the overall profile
of the social network’s characteristics to display the network
while the latter emphasizes on the assessment of the nodes
to capture the characteristics of each node [28]. In addition,
to eliminate the influence of the network scale, we compare
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the metrics of the Turing Award Collaboration Network with
metrics of the random network. The network-level metrics
which are widely used to standardize or the metrics infer the
structural aspects of the network are as follows:
• Diameter: The given distance dij refers to the length

of the shortest path connecting the two nodes i and j.
The diameter D of the network is used to measure the
maximum eccentricity, which is the maximum distance
between any two nodes:

D = max
i,j

dij . (1)

• Density: Density is used to measure connectivity across
the network and it is calculated by dividing the total
number of edges by the total number of possible edges in
the network with the same number of nodes. The formula
for density p is:

p =
E

1
2N(N − 1)

, (2)

where N is the total number of nodes and E is the
total number of edges in the network. We can adopt
network density to characterize the extent of coherency
and linkage between nodes in the network [29].

• Average path length: The average shortest path length L
is the average length of the shortest path between every
two nodes in the network [30]:

L =
1

N(N − 1)

∑
i 6=j

dij , (3)

In the collaboration network, the distance between coau-
thors of a paper is 1, while the distance among the authors
that they do not collaborate directly but have the same
coauthor is 2.

• Degree: The adjacency matrix A = (aij)N×N of a given
graph G is an N-th order square matrix, and the element
aij on the i-th row and the j-th column is defined as
follows:

aij =

{
1, if there is an edge between node i and j;
0, otherwise.

(4)
The degree ki of the node i refers to the number of nodes
linked to the node i which is expressed as:

ki =

N∑
j=1

aij . (5)

• Average neighbor degree: It measures the average de-
gree of neighbors for each node. The average degree of
the node i is:

knn,i =
1

Num(i)

∑
jεN(i)

kj , (6)

where N(i) is the set of neighbors of the node i, Num(i)
is the number of nodes in N(i) and kj is the degree of
the node j that belongs to N(i).

• Degree assortativity: In order to identify the relevance
of the centrality of a node to its neighbor nodes, we

take a degree assortativity or a mean nearest neighbor
connectivity as a metric of connection similarity [31]. It
is a measure of the degree to either end of the edge by
calculating the Pearson Correlation Coefficient r:

r =

∑
i kiji −M−1

∑
i ki
∑
i ji√

[
∑
i k

2
i −M−1(

∑
i ki)

2][
∑
i j

2
i −M−1(

∑
i ji)

2]
,

(7)
where ki, ji are the degrees of the node for the ends of
the ith edge in the network, along with i = 1···M . The
range of the coefficient r is between -1 and 1.

• Clustering coefficient: Clustering coefficient represents
the ratio of neighbor nodes that are connected to each
other of a node. By analyzing this metric, a highly aggre-
gate coefficient means that the local network centering on
this node is gathered together densely in a collaboration
network. Suppose the degree of node i in the network is
ki, i.e., it has ki neighbor nodes. If the ki neighbor nodes
are also neighbors, there are ki(ki−1)

2 edges between these
neighbors, and this is the case with the largest number
of edges. Clustering coefficient Ci of the node i can be
expressed as:

Ci =
2Ei

ki(ki − 1)
, (8)

where Ei actually represents the number of edges which
exist between node i and ki neighbor nodes.

• Core: The measure of the core can identify groups that
are closely interconnected in the network [32]. Let G =
(V,E) be an undirected graph and let H = (W,R) be a
subgraph of G, i.e., H ⊆ G. If subgraph H is a maximal
connected subgraph in which all nodes have the degree
at least K, it is defined to be a K − Core subgraph of
G. It is calculated by Eq. (9), in the subgraph H , for all
i ∈W :

ki∈W ≥ K. (9)

Every node i ∈ V has a core number of K, if it belongs
to a K-core but not to a (K + 1) − Core. If the nodes
of the K − Core subgraph of G that corresponds to the
maximum value of Kmax, we denote the main core as the
maximum core number Kmax. In our network, connected
nodes are independent of the other nodes connected to
nodes existing outside the group.

• Clique: The clique is defined as the largest set of nodes
that all nodes are directly adjacent to each other. Under
the node removal operation, a clique has an invariant
attribute: if a node is deleted from a clique, the rest of
the subgraph is still a clique. Each node contributes a
q-clique (a completely connected subgraph Q consisting
of q nodes) onto G. It indicates that each node in Q is
no more than a distance q away from others. Thus, we
can know that a clique is a connected component which
guarantees each author of this clique writes at least one
paper with all other authors.

• Degree centrality: The node v’s degree centrality is to
measure the number of other nodes which are directly
connected to the node [33]. For normalization, it is
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divided by the maximum possible degree n − 1 of the
whole network. So it is expressed as:

CD(i) =
ki

N − 1
. (10)

• Closeness centrality: Throughout our established net-
work, closeness centrality tends to give high values
for nodes near the network center and high-closeness
centrality nodes are generally important influencers. In
order to calculate this metric, we have [33]:

CC(i) =
N − 1∑N
j 6=i dij

. (11)

3) Turing Number (TN ): To find hierarchical relationships
of the network, we explore relationships of the distance to
the Turing Award and the related metrics (bibliometric-level
and network-level). Enlightened by the previous study on the
Erdös Number, we define the metric of the Turing Number,
first proposed, to measure the distance to the Turing Award.
The explanation is as follows:

Turing Number (TN ): The Turing Number depicts the
distance between the author and the Turing Award, which is
similar to the concept of the shortest path distance. The TN of
a Turing Award laureate is zero. For assigning TN , someone
must be the coauthor of the research paper while another
person needs to have a limited TN . Under the circumstance of
treating the Turing Award laureates as a group, if one person’s
TN is T + 1, the one’s distance to the Turing Award is T
+ 1, where T is the lowest TN of any coauthor. A Turing
Number refers to the minimum value of the shortest path of
every author to all the Turing Award laureates. In other words,
we calculate the shortest path length of each scholar to all
the Turing Award laureates, and we take the smallest number
as the TN . From the perspective of complex networks, the
smaller the value of TN is, the smaller the distance between
scholars and the Turing Award laureates is. Based on the
definition of TN , we extend the concept of the Erdös Number
and measure the shortest path length of a given author to any
Turing Award laureate.

We anticipate to discover correlations of authors’ productiv-
ity, position in the network and distances to the Turing Award.

III. RESULTS

An outstanding contribution of our work is the establish-
ment of the Turing Award Collaboration Network and the
exploration of related metrics to analyze this network. We
explore the evolution of the network from 1974 to 2016. The
results fall into two categories: bibliometric-level and network-
level analysis.

A. Bibliometric-level Analysis

We first focus on the most intuitive metrics: the number of
authors and papers. Fig. 2(a) shows the number of annual au-
thors. The embedded graph displaces a log-linear distribution
plotted with the same data that matches the exponential fitting
the formula a ∗ exp(bx), where b = 0.063 and R2 = 0.94. Fig.
2(b) shows the number of papers each year and the embedded

graph displaces a log-linear distribution plotted with the same
data that matches the exponential fitting a ∗ exp(bx), where
b = 0.080 and R2 = 0.97. R2 is used to describe the extent
fitting of the linear function, where the higher the value is
(i.e., closer to 1), the better the fitting is. We can observe that
the two metrics in each year increase exponentially.
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Fig. 2: The number of authors and papers each year. (a)
The evolution of the number of authors versus year. (b)
The evolution of the number of papers versus year. Each
embedded graph displaces a log-linear distribution plotted with
the same data. It indicates that the number of author and papers
generated in each year increases exponentially.
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Fig. 3: Percentage of papers and mean authors per paper,
papers per author each year. (a) Annual percentage of papers
published by one, two, three, and more than three authors. (b)
The mean papers per author versus year (black line) and the
mean authors per paper versus year (the red line).

As shown in Fig. 3(a), we can observe the changes in the
collaboration pattern. In 1974, 79.3% authors publish papers
by themselves and the collaboration strength among scholars
is still weak since only 0.8% papers have more than three
authors. Since then, scholars have tended to collaborate with
others to publish papers. We can observe that the average
number of authors per paper has increased from 1.25 to 2.28
throughout the whole period in Fig. 3(b). Subsequently, the
number of papers written by individual authors continues to
increase, but its percentage has dropped from 79.3% to less
than 42.2%. In contrast, the number and the percentage of
papers with multiple authors have increased significantly. The
number of papers coauthored by two authors is the highest
among those papers. The reason is probably that with the rapid
development of computer science, it is increasingly difficult
to publish papers alone. We can realize that it is necessary to
focus on team research.

The mean number of papers per author and authors per
paper are plotted in Fig. 3(b). From 1974 to 2002, the mean
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papers per author is hovering between 1.0 and 1.2 yearly.
After 2002, it shows an upward trend, till 2015 to about 1.70,
therewith following by some decline. Since the 1970s, papers’
average authors have increased quickly. At present, each paper
has an average of two authors.

B. Network-level Analysis

The analysis of these network-level metrics provides in-
sights into the evolution of the Turing Award Collaboration
Network. Meanwhile, we compare some calculated metrics
with those in the random network to better reflect the realities.
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Fig. 4: Evolution of dimension and density. (a) It describes the
growth of nodes and edges each year. The red line represents
the trend of node, and the black line represents the trend of
edge. (b) It shows density of the Turing Award Collaboration
Network compared to the random network. The blue and red
lines represent trends in the Turing Network and the random
network, respectively.

The evolution of nodes and edges in the entire collaboration
network is shown in Fig. 4(a). It is demonstrated clearly that
due to the growing number of authors and their collaborators,
these metrics have increased notably each year.

In Fig. 4(b), we can observe the phenomenon that with
the same trend for the random network, the density is also
declining. It can be understood that the number of published
papers or collaborations with other authors is limited due to the
increase number of new scholarships, resulting in decreased
density in both networks.
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Fig. 5: Evolution of distance metrics and clustering coefficient.
(a) It depicts trends of network diameter, average shortest path
and TN . (b) It shows the evolution of clustering coefficient.
The solid line indicates the evolution of the Turing Network,
and the dotted line is the evolution of the random network.

Fig. 5(a) shows the changes of diameter, which starts at 21,
and then reaches the maximum 28 in 1984. Next, it drops to

around 15 in 2016. The initial increasing of distance indicates
that the network is gradually expanding, but the subsequent
declining of the metric indicates that as the network continues
to expand, the extent of collaboration is also increasing. It has
the same tendency as the diameter of the random network,
but the values are larger, and they indicate that relationships
in this network are more complicated and dispersed than those
in the random network.

The average shortest path length is plotted in Fig. 5(a). It
can be seen that the initial network of the shortest path length
is about 8.7 in 1974, and the path length steadily decreases
from 1974 to 2016. Furthermore, the shortest path converges
to about 4.3 at a later stage, and it indicates that a scholar in
the network requires only four or five steps to achieve another
scholar, which means that scientific information can be easily
obtained by the need of the researcher [34]. Compared with the
random network, the length is larger initially, but then it basi-
cally coincides with the random network. In accordance with
the “Six Degree Separation” theory, the network is stabilized
gradually. In addition, TN has the same trend as the average
path length. But the value of TN is smaller, which shows
that the distance for authors to the Turing Award is shorter
than the average distance in the network. We can notice that
the value of TN differs greatly from the diameter. We deem
that the definition of TN and network diameter is different.
The former refers to the distance of any scholars to the group
of the Turing Award laureates, and the latter measures the
distance between any two scholars in the network. Due to the
difference in definition, the average of the two metrics differs
by about 20. Therefore, the diameter of the network fluctuates
relatively large.

In the Turing Award Collaboration Network, clustering
coefficient increases from 0.28 in 1974 to 0.41 in Fig. 5(b). But
it starts to decrease in 2004. Although the number of scholars
has been increasing, they are gathered to a certain extent, not
an unlimited association. This phenomenon shows specifically
that in the twenty-first century, the collaboration pattern be-
comes increasingly unified over time. In addition, this metric is
far greater than that in the random network, which indicates
that the collaboration network tends to converge to form a
high-density aggregation group.

The above analysis shows that scholars are gradually in-
volved in tight collaboration and a large number of scholars
join the network through the collaboration. In the dynamics
of degree (Fig. 6), we can observe that the value is basically
year-on-year rising with exactly the same trend in this metric
of the random network. This metric shows a basic trend of
linear growth and it distributes between 2 and 20. So far,
the average node degree in the network has reached 20. The
embedded graph in Fig. 6 displaces the logarithmic linearity
that matches the exponential fitting a ∗ exp(bx), where b =
0.020 and R2 = 0.93.

The Barabási-Albert model [35] of the scare-free network
was first proposed in 1999. The significant feature of a scale-
free network is that the degree distribution follows a power-
law distribution p(x) = cx−α, where the scale-free coefficient
(-α) is generally negative. Therefore, to explore whether the
Turing Award Collaboration Network is a scale-free network,
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Fig. 6: Evolution of average degree. The embedded graph
shows the log-linear graph. The blue line is the trend of the
Turing Network and the red line is the evolution of the random
network.
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Fig. 7: Evolution of degree distribution. (a) It describes the
degree cumulative probability distribution each year. (b) It
shows the log-log degree cumulative probability distribution
of the same network. Each line in both graphs represents the
degree distribution of a certain year.

we need to analyze the degree distribution. We plot the degree
distribution of the Turing Award Collaboration Network at
several intervals of time points (i.e. 1974, 1979, 1984, 1989,
1994, 1999, 2004, 2009, 2014, 2016) in Fig. 7. As a result
of the degree distribution, several nodes have a high degree.
However, a large number of nodes are low. From the point,
degree distribution seems to follow the power-law distribution
essentially, especially when the dimensions of the network
(nodes and edges) are large.

Subsequently, we plot the log-log distribution of degree
distributions for different years in Fig. 7(b), which corresponds
to the time points in Fig. 7(a). It can be concluded that these
distributions are not purely power-law, otherwise, these points
roughly stay in a straight line. In contrast, the tail of the
distribution conforms to an exponential decay in 2016. In other
words, the entire network cannot be used to fit the power-law
distribution. From the analysis mentioned above, the Turing
Award Collaboration Network cannot be considered as a scale-
free network.

The relationship among scholars depends on the number
of neighbors and their locations. In some networks, it has
been noticed that the degree of their neighbors is related to
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Fig. 8: Evolution of degree correlation. (a) Correlation of
degree and average neighbor degree. Each color point refers
to a certain year. The black line is the identity line x = y.
(b) Degree assortativity of the Turing Award Collaboration
Network (blue point), compared to the random network (red
point).
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Fig. 9: Evolution of core and clique distribution. (a) This figure
shows the k-core distribution of the Turing Network. (b) It
shows the clique distribution of the Turing Network. Each line
refers to one specific year.

their own degree. The degree for their neighbors is apt to
be low when their degree is low. Conversely, the neighbor’s
degree is high when their own degree is high. In collaboration
pattern, the prevalent authors are highly associated with other
popular authors and the less popular authors are likely to
be associated with the popular authors. We can quantify the
relevance of these degrees by analyzing the correlation of the
average neighbor degree and its own degree. The result is
shown in Fig. 8(a).

The solid line represents the same degree as its average
neighbor degree. From Fig. 8(a), we can discover that the
average degree of the small-degree nodes’ neighbors is signifi-
cantly larger. But with increase of degree, the average neighbor
degree of nodes is significantly higher than their degree.
Another more accurate way is to calculate the assortativity
coefficient, which needs to measure the preferences of nodes
attached to other nodes in any way. The positive value of the
degree assortativity indicates the correlation among similar-
degree nodes (assortativity), while the negative value repre-
sents the relationships among different-degree nodes (disas-
sortativity). In Fig. 8(b), the current degree assortativity of the
Turing Award Collaboration Network is 0.074, positive, this
condition indicates that the author tends to collaborate with
other authors of a similar number of collaborators. Compared
with the values in the random network, it can be seen that
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(a) 1974 (b) 1984 (c) 1994 (d) 2004

Fig. 11: Evolution of the Turing Award Collaboration Network. (a) It shows the Turing Network of all authors in 1974. (b)
Due to the large number of nodes in Turing Network in 1984, it’s not easy to observe network structure visually. Therefore,
we select the 5-Core subnetwork of the Turing Network in 1984. (c) It shows the 8-Core subnetwork of the Turing Network
in 1994. (d) It shows the 15-Core subnetwork of the Turing Network in 2004. Network graphs were produced in Gephi, using
the Fruchterman Reingold layout with scaling set to 5000 and gravity to 10. Node size is proportional to the authors degree.
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Fig. 10: Evolution of degree centrality and closeness centrality.
The solid line refers to the evolution of the Turing Network,
and the dotted line refers to the evolution of the random
network.

the degree assortativity has been increasing steadily, which is
related to the increasing number of authors.

By analyzing the core and the clique, we can acknowledge
the evolution of the network group. The sizes of the core and
the clique are both rising each year, which also conforms
to the rule of network evolution. The value of the clique is
similar to the core’s at the early stages, while the clique’s
growth trend is significantly higher than the core’s later. This
phenomenon shows that extensive collaboration in the network
is more prevalent than collaborating with the same person or
group.

Then, in order to inquire the trend more clearly, we can
observe the distribution in Fig. 9. The K-Core distribution of
the Turing Award Collaboration Network is shown in Fig. 9(a).
With the increase of K, the distribution of K-Core tends to be
gentler. The majority of authors belong to small K-Cores (less
than 9) and 20-Core contains most of the authors in 2016.
The largest K-Core is 56 in 2016, which is not the group of
the Turing Award laureates (K-Core is 51). The distribution
of the clique is shown in Fig. 9(b), which is similar to the

K-Core. However, the value of the clique is much greater
than K-Core’s via the magnitude of the two pictures’ abscissa
(100 vs 10). This also verifies our thought: The Turing Award
Collaboration Network tends to be more team collaboration
(also called ”baotuan” in Chinese).

Degree centrality quantifies the number of nodes connected
to other nodes. Closeness centrality evaluates whether nodes
are connected to other prominent nodes or not.

From Fig. 10, we can observe that degree centrality of the
Turing Award Collaboration Network has been decreasing over
time and it is smaller than the values in the random network.
As the number of nodes in the network increases exponentially,
it still leads to decreased degree centrality. This means that the
links among scientists are almost similar across the network.
It brings about the simultaneous development of opportunities
for all scientists.

Closeness centrality shows a growth trend in Fig. 10. In
contrast to degree centrality, the nodes have an increased
pattern. The slope of the curve is larger at the later stages of
the network dynamics, while the smaller slope of earlier stages
can be attributed to the preferential attachment compared with
the random network.

Because the number of nodes in the early network is small,
the new added nodes are more likely to be attached to the new
introduced nodes in each period. But the added nodes are more
likely to be attached to higher nodes, resulting in incense of
the slope of closeness centrality. This makes the newly added
nodes hard to perform on the shortest path of the node pair
during network evolution.

IV. DISCUSSIONS

A. Evolution of the Turing Award Collaboration Network

After analyzing the structure of the Turing Award Collabo-
ration Network over years, we proceed to observe the evolution
of the network intuitively. Therefore, we plot the evolution of
the Turing Award Collaboration Network, as shown in Fig.
11. Because of the plentiful years involved, we take 10 years
as a span to show the changes from 1974 to 1984, 1994,
2004. As there are overmuch nodes and edges, we only take
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(f) Closeness centrality

Fig. 13: Annual relationship of TN and specific network-level metrics. Each figure shows changes of a certain network-level
metric against TN . The dotted line indicates average change of each metric.
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Fig. 12: Annual relationship of TN and specific bibliometric-
level metrics. (a) It shows changes in the numbers of papers
against the value of TN . (b) It shows changes in the numbers
of collaborations with varying the value of TN . The dotted
line indicates the average change of each metric.

the center of the network with the high K-Core. From Fig.
11, we can notice that with the development of the network,
a growing number of nodes enter the network and the new
relationships of the current nodes increase. As the number of
nodes in the network increases, the connection among nodes
becomes closer. In addition, the density of the network rises
as the connections of nodes increase.

As the Turing Award laureates join the network gradually,
they not only bring mounting nodes to join but also make
the Turing Award for the network more central. Although we
only take the high K-Core of the network, we can still observe
that the network’s group aggregation and contact closely.
Moreover, the central group is also gradually expanding. This
result could be used to predict those most likely to win Turing
Award and the new join should fit the variation trend of the

network.

B. Correlation of Turing Number (TN ) and Distinct Metrics

In order to further explore the relationship of the various
metrics and the Turing Award, we begin to analyze the impact
of different TN on the relevant metrics. Table I shows the
evolution of the TN . The time phase represents the change
of the TN from 1974 to 1979, 1984, 1994, 2004, 2009, 2014,
2016.

1) Bibliometric-level Metrics Relationship: We first ana-
lyze the relationship of the bibliometric-level metrics and TN .
The results are shown in Fig. 12. When TN are 1, 2, 3, the
author’s number of papers and collaborations are above the
average. Then, both of graphs demonstrate that the smaller the
TN is, the larger the bibliometric-level metric is. The TN 0
in Fig. 12 is the average of all the Turing Award laureates.
It can be seen that the number of papers and collaborations
of the Turing Award laureates are no more than that of the
general scholars. Besides, scholars with the TN 2 have a
higher number of collaborations and papers than scholars’ with
the TN 1 in the later period. There is an upward trend in the
growth of the network for all authors.

2) Network-level Metrics Relationship: We analyze the
impact of TN on the network-level metrics, and the results
are shown in Fig. 13. The TN 0 in Fig. 13 is the total value
of all the Turing Award laureates, while The TN 0 in Fig.
12 is the average. It is not appropriate for bibliometric-level
metrics to use total value. For example, if we use total value,
the amount of Turing Award laureates paper is tiny to the
rest authors paper. Because the total Turing Award laureates
number is tiny. Network-level metrics is based on collaboration
network structure. The influence of Turing Award laureates
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TABLE I: Evolution of TN from 1974 to 1979, 1984, 1994, 2004, 2009, 2014, 2016.

Metrics Time phase

1979 1984 1989 1994 1999 2004 2009 2014 2016

Turing Number 3.469 3.767 3.899 3.866 3.760 3.571 3.305 3.039 2.964

can be reflected through the network structure. So it is better
to consider the total value of TN 0. We can realize that the
relationships of TN and the network-level metrics are not
exactly the same as the bibliometric-level metrics.

The degree (Fig. 13(a)), the core (Fig. 13(c)) and the clique
(Fig. 13(d)) show that the smaller the TN is, the greater the
values are. However, for clustering coefficient depicted in Fig.
13(b), the correlation with TN cannot be seen and there is no
growth trend towards the year, which is similar to the annual
clustering coefficient in Fig. 5(b).

In terms of centrality, closeness centrality is increasing year-
ly. The smaller TN is better for closeness centrality. However,
degree centrality does not have such a strong correlation. It is
noteworthy that, as time goes by, the correlations of TN and
degree centrality are not large at later stages, despite some
fluctuations exist. But the changes of the closeness centrality
are more obvious over time.

1 9 7 4 1 9 8 1 1 9 8 8 1 9 9 5 2 0 0 2 2 0 0 9 2 0 1 6- 1 . 0
- 0 . 8
- 0 . 6
- 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6

 

 

Co
rre

lat
ion

 co
eff

icie
nt

Y e a r

 P a p e r                                    C o l l a b o r a t i o n
 A v e r a g e  n e i g h b o r  d e g r e e     C l u s t e r i n g
 C o r e                                      C l i q u e
 D e g r e e  c e n t r a l i t y                   C l o s e n e s s  c e n t r a l i t y

Fig. 14: Annual correlation coefficient of TN and specific
metrics.

3) Correlation Coefficient: For the purpose of checking
whether existing measures are associated with TN and
changes in the subsequent years, we adopt the Spearman
Correlation Coefficient to calculate the relationship of the
relevant metrics and TN from 1974 to 2016, because many
metrics do not conform to the normal distribution and the
non-parametric correlations are more appropriate and robuster
than the Pearson correlations. Spearman correlation coefficient
is defined as Pearson correlation coefficient between rank
variables. For the samples with size n, all original data are
converted into rank data. And the correlation coefficient ρ is
expressed as:

ρ =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
∑
i(yi − y)2

. (12)

where the raw data is assigned a corresponding rank based
on their average descending position in the overall data. For
example, given three values: 33,21,44, their rank would be
2,1,3. xi is the TN rank of ith sample. x is the average rank of
all x. yi is the metric rank of ith sample. y is the average rank
of all y. If y tends to increase as x increases, the Spearman
Correlation is positive. If y tends to decrease as x increases, the
Spearman Correlation is negative. If Spearman Correlation is
0, it indicates that y has no tendency as x increases. As x and y
get close to a complete monotonic correlation, the Spearman
Correlation increases in absolute value. When x and y are
completely monotonic, the absolute value of the Spearman
Correlation Coefficient is 1.

Fig. 14 shows that the relevant metrics are negatively
correlated with TN except for the clustering coefficient. When
the absolute value of correlation coefficient is closer to 1,
the metric are more correlated to TN. The trends of the vast
majority of metrics are the same with some slight increase
over years or some fluctuations. Of all the metrics, closeness
centrality is of great relevant metric (the absolute value of
Correlation Coefficient is about 0.6 in 2016). There are some
declines in the middle of the periods. The second is the core.

From the exploration mentioned above, we can understand
that the correlation of the relevant metrics and TN is always
significant over time. From the perspective of the centrality, the
correlation of the closeness centrality and TN is the highest.
In other words, the author with a high closeness centrality is
often closer to the Turing Award. In addition, the coefficient
has an increasing trend yearly for degree centrality but has a
stable trend for closeness centrality.

V. CONCLUSION AND FUTURE WORK

The ACM A.M. Turing Award is recognized as the highest
honor prize in the realm of computer science. Half a century
has passed since the first laureate was awarded. However, there
is scarce research to explore the potential mechanism of the
Turing Award and collaboration pattern of its laureates. Our
work is the first research to study the evolution of the Turing
Award Collaboration Network. In this paper, we analyze the
evolution of the Turing Award Collaboration Network, which
is extracted from the journal and conference papers recorded
in DBLP from 1974 to 2016. We combine the metrics of the
bibliometric-level method and the network-level approach to
characterize the multiple attributes of the researchers.

The observations from the Turing Award Collaboration
Network show that the collaboration of different periods has a
different intensity as well as the type of collaborative behavior.
The number of papers and authors of the network has both
increased exponentially which indicates the field of computer
science has developed rapidly over the past 42 years. In the
early stage, scholars did not pay attention to collaboration, so
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they were more inclined to publish papers alone. Gradually,
they began to focus on collaboration so that multiple authors’
papers account for a larger proportion than the single authors’
papers. But the average number of multiple authors’ papers
is limited to two authors. This consequence is consistent with
other related disciplines [36], [37].

Scholars can connect to each other in four path lengths,
characterizing the small world properties. However, the Turing
Award Collaboration Network is not the scale-free network,
and then clustering coefficient began to decline in 2004. The
reason may be that each author can collaborate with a limited
number of scholars, so the scholars in the Turing Award
Collaboration Network cannot be “preferential attachment”
freely as the scale-free network. In addition, scholars tend to
form a group to study the academic. Moreover, we further
explore the relationship of the Turing Number (TN ) and the
measured metrics. As a result, we draw a conclusion that
the closer the authors are to the Turing Award, the better
the metrics are. It shows these authors are more superior.
Compared with the random network, this network is more
closely linked to the group, but less connected because of the
community.

As the possible future research direction, we believe that it
would be necessary to expand the analysis of the performance
metrics, including citations and h-index, [5], [38], to perceive
whether the collaboration has an impact on them.
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