86 research outputs found

    Optimized thermoelectric properties of Mo_3Sb_(7-x)Te_x with significant phonon scattering by electrons

    Get PDF
    Heavily doped compounds Mo_3Sb_(7−x)Te_x (x = 0, 1.0, 1.4, 1.8) were synthesized by solid state reaction and sintered by spark plasma sintering. Both X-ray diffraction and electron probe microanalysis indicated the maximum solubility of Te was around x = 1.8. The trends in the electrical transport properties can generally be understood using a single parabolic band model, which predicts that the extremely high carrier concentration of Mo_3Sb_7 (~10^(22) cm^(−3)) can be reduced to a nearly optimized level (~2 × 10^(21) cm^(−3)) for thermoelectric figure of merit (zT) by Te-substitution with x = 1.8. The increased lattice thermal conductivity by Te-doping was found to be due to the decreased Umklapp and electron–phonon scattering, according to a Debye model fitting. The thermoelectric figure of merit (zT) monotonously increased with increasing temperature and reached its highest value of about 0.51 at 850 K for the sample with x = 1.8, making these materials competitive with the state-of-the-art thermoelectric SiGe alloys. Evidence of significant electron–phonon scattering is found in the thermal conductivity

    Xanthine oxidase/hydrogen peroxide generates sulfur trioxide anion radical (SO.−3) from sulfite (SO2−3)

    Get PDF
    AbstractIn the presence of hydrogen peroxide (H2O2), xanthine oxidase has been found to catalyze sulfur trioxide anion radical (SO.−3) formation from sulfite anion (SO2−3). The SO.−3 radical was identified by ESR (electron spin resonance) spin trapping, utilizing 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) as the spin trap. Inactivated xanthine oxidase does not catalyze SO.−3 radical formation, implying a specific role for this enzyme. The initial rate of SO.−3 radical formation increases linearly with xanthine oxidase concentration. Together, these observations indicate that the SO.−3 generation occurs enzymatically. These results suggest a new property of xanthine oxidase and perhaps also a significant step in the mechanism of sulfite toxicity in cellular systems

    Effects of Unconscious Processing on Implicit Memory for Fearful Faces

    Get PDF
    Emotional stimuli can be processed even when participants perceive them without conscious awareness, but the extent to which unconsciously processed emotional stimuli influence implicit memory after short and long delays is not fully understood. We addressed this issue by measuring a subliminal affective priming effect in Experiment 1 and a long-term priming effect in Experiment 2. In Experiment 1, a flashed fearful or neutral face masked by a scrambled face was presented three times, then a target face (either fearful or neutral) was presented and participants were asked to make a fearful/neutral judgment. We found that, relative to a neutral prime face (neutral–fear face), a fearful prime face speeded up participants' reaction to a fearful target (fear–fear face), when they were not aware of the masked prime face. But this response pattern did not apply to the neutral target. In Experiment 2, participants were first presented with a masked faces six times during encoding. Three minutes later, they were asked to make a fearful/neutral judgment for the same face with congruent expression, the same face with incongruent expression or a new face. Participants showed a significant priming effect for the fearful faces but not for the neutral faces, regardless of their awareness of the masked faces during encoding. These results provided evidence that unconsciously processed stimuli could enhance emotional memory after both short and long delays. It indicates that emotion can enhance memory processing whether the stimuli are encoded consciously or unconsciously

    Enhancing Building Semantic Segmentation Accuracy with Super Resolution and Deep Learning: Investigating the Impact of Spatial Resolution on Various Datasets

    Full text link
    The development of remote sensing and deep learning techniques has enabled building semantic segmentation with high accuracy and efficiency. Despite their success in different tasks, the discussions on the impact of spatial resolution on deep learning based building semantic segmentation are quite inadequate, which makes choosing a higher cost-effective data source a big challenge. To address the issue mentioned above, in this study, we create remote sensing images among three study areas into multiple spatial resolutions by super-resolution and down-sampling. After that, two representative deep learning architectures: UNet and FPN, are selected for model training and testing. The experimental results obtained from three cities with two deep learning models indicate that the spatial resolution greatly influences building segmentation results, and with a better cost-effectiveness around 0.3m, which we believe will be an important insight for data selection and preparation

    GNN-LM: Language Modeling based on Global Contexts via GNN

    Full text link
    Inspired by the notion that ``{\it to copy is easier than to memorize}``, in this work, we introduce GNN-LM, which extends the vanilla neural language model (LM) by allowing to reference similar contexts in the entire training corpus. We build a directed heterogeneous graph between an input context and its semantically related neighbors selected from the training corpus, where nodes are tokens in the input context and retrieved neighbor contexts, and edges represent connections between nodes. Graph neural networks (GNNs) are constructed upon the graph to aggregate information from similar contexts to decode the token. This learning paradigm provides direct access to the reference contexts and helps improve a model's generalization ability. We conduct comprehensive experiments to validate the effectiveness of the GNN-LM: GNN-LM achieves a new state-of-the-art perplexity of 14.8 on WikiText-103 (a 3.9 point improvement over its counterpart of the vanilla LM model), and shows substantial improvement on One Billion Word and Enwiki8 datasets against strong baselines. In-depth ablation studies are performed to understand the mechanics of GNN-LM. \footnote{The code can be found at https://github.com/ShannonAI/GNN-LMComment: To appear at ICLR 202

    Biological Characteristics of Severe Combined Immunodeficient Mice Produced by CRISPR/Cas9-Mediated Rag2 and IL2rg Mutation

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 is a novel and convenient gene editing system that can be used to construct genetically modified animals. Recombination activating gene 2 (Rag2) is a core component that is involved in the initiation of V(D)J recombination during T- and B-cells maturation. Separately, the interleukin-2 receptor gamma chain gene (IL2rg) encoded the protein-regulated activity of natural killer (NK) cells and shared common receptors of some cytokines. Rag2 and IL2rg mutations cause immune system disorders associated with T-, B-, and NK cell function and some cytokine activities. In the present study, 2 single-guide RNAs (sgRNAs) targeted on Rag2 and IL2rg genes were microinjected into the zygotes of BALB/c mice with Cas9 messenger RNA (mRNA) to create Rag2/IL2rg-/- double knockout mice, and the biological characteristics of the mutated mice were subsequently analyzed. The results showed that CRISPR/Cas9-induced indel mutation displaced the frameshift of Rag2 and IL2rg genes, resulting in a decrease in the number of T-, B-, and NK cells and the destruction of immune-related tissues like the thymus and spleen. Mycobacterium tuberculosis 85B antigen could not induce cellular and humoral immune response in mice. However, this aberrant immune activity compromised the growth of several tumor heterogenous grafts in the mutated mice, including orthotopic and subcutaneous transplantation tumors. Thus, Rag2/IL2rg-/- knockout mice possessed features of severe combined immunodeficiency (SCID), which is an ideal model for human xenograft

    Neuroprotective Mechanisms of Lycium barbarum Polysaccharides Against Ischemic Insults by Regulating NR2B and NR2A Containing NMDA Receptor Signaling Pathways

    Get PDF
    Glutamate excitotoxicity plays an important role in neuronal death after ischemia. However, all clinical trials using glutamate receptor inhibitors have failed. This may be related to the evidence that activation of different subunit of NMDA receptor will induce different effects. Many studies have shown that activation of the intrasynaptic NR2A subunit will stimulate survival signaling pathways, whereas upregulation of extrasynaptic NR2B will trigger apoptotic pathways. A Lycium barbarum polysaccharide (LBP) is a mixed compound extracted from Lycium barbarum fruit. Recent studies have shown that LBP protects neurons against ischemic injury by anti-oxidative effects. Here we first reported that the effect of LBP against ischemic injury can be achieved by regulating NR2B and NR2A signaling pathways. By in vivo study, we found LBP substantially reduced CA1 neurons from death after transient global ischemia and ameliorated memory deficit in ischemic rats. By in vitro study, we further confirmed that LBP increased the viability of primary cultured cortical neurons when exposed to oxygen-glucose deprivation (OGD) for 4 h. Importantly, we found that LBP antagonized increase in expression of major proteins in the NR2B signal pathway including NR2B, nNOS, Bcl-2-associated death promoter (BAD), cytochrome C (cytC) and cleaved caspase-3, and also reduced ROS level, calcium influx and mitochondrial permeability after 4 h OGD. In addition, LBP prevented the downregulation in the expression of NR2A, pAkt and pCREB, which are important cell survival pathway components. Furthermore, LBP attenuated the effects of a NR2B co-agonist and NR2A inhibitor on cell mortality under OGD conditions. Taken together, our results demonstrated that LBP is neuroprotective against ischemic injury by its dual roles in activation of NR2A and inhibition of NR2B signaling pathways, which suggests that LBP may be a superior therapeutic candidate for targeting glutamate excitotoxicity for the treatment of ischemic stroke

    Neuroprotective Mechanisms of Lycium barbarum Polysaccharides Against Ischemic Insults by Regulating NR2B and NR2A Containing NMDA Receptor Signaling Pathways

    Get PDF
    Glutamate excitotoxicity plays an important role in neuronal death after ischemia. However, all clinical trials using glutamate receptor inhibitors have failed. This may be related to the evidence that activation of different subunit of NMDA receptor will induce different effects. Many studies have shown that activation of the intrasynaptic NR2A subunit will stimulate survival signaling pathways, whereas upregulation of extrasynaptic NR2B will trigger apoptotic pathways. A Lycium barbarum polysaccharide (LBP) is a mixed compound extracted from Lycium barbarum fruit. Recent studies have shown that LBP protects neurons against ischemic injury by anti-oxidative effects. Here we first reported that the effect of LBP against ischemic injury can be achieved by regulating NR2B and NR2A signaling pathways. By in vivo study, we found LBP substantially reduced CA1 neurons from death after transient global ischemia and ameliorated memory deficit in ischemic rats. By in vitro study, we further confirmed that LBP increased the viability of primary cultured cortical neurons when exposed to oxygen-glucose deprivation (OGD) for 4 h. Importantly, we found that LBP antagonized increase in expression of major proteins in the NR2B signal pathway including NR2B, nNOS, Bcl-2-associated death promoter (BAD), cytochrome C (cytC) and cleaved caspase-3, and also reduced ROS level, calcium influx and mitochondrial permeability after 4 h OGD. In addition, LBP prevented the downregulation in the expression of NR2A, pAkt and pCREB, which are important cell survival pathway components. Furthermore, LBP attenuated the effects of a NR2B co-agonist and NR2A inhibitor on cell mortality under OGD conditions. Taken together, our results demonstrated that LBP is neuroprotective against ischemic injury by its dual roles in activation of NR2A and inhibition of NR2B signaling pathways, which suggests that LBP may be a superior therapeutic candidate for targeting glutamate excitotoxicity for the treatment of ischemic stroke

    The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding

    Get PDF
    Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome consisted of thousands of fragments with missing centromeres and telomeres, which limited the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the pinot noir cultivar (PN40024) using the PacBio HiFi long reads. The T2T reference genome (PN_T2T) was 69 Mb longer with 9026 more genes identified than the 12X.v2 version (Canaguier et al., 2017). We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though the PN40024 sample had been selfed for nine generations, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome, therefore, provides important resources for grapevine genetics and breeding.This work was supported by the National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) to Yongfeng Zhou, the National Key Research and Development Program of China(grant2019YFA0906200), the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202101), the Shenzhen Science and Technology Program (grant KQTD2016113010482651), the BMBF funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI). We thank Bianca Frommer, Marie Lahaye, David Navarro-Payá, Marcela K. Tello-Ruiz and Kapeel Chougule for their help in analyzing the RNA-Seq data and in running the gene annotation pipeline. This study is also based upon work from COST Action CA17111 INTEGRAPE and form COST Innovators Grant IG17111 GRAPEDIA, supported by COST (European Cooperation in Science and Technology).ViticultureT2Tgap-fregene clustercentromeretelomerePublishe
    • …
    corecore