801 research outputs found

    Online Deep Metric Learning

    Full text link
    Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.Comment: 9 page

    OPML: A One-Pass Closed-Form Solution for Online Metric Learning

    Get PDF
    To achieve a low computational cost when performing online metric learning for large-scale data, we present a one-pass closed-form solution namely OPML in this paper. Typically, the proposed OPML first adopts a one-pass triplet construction strategy, which aims to use only a very small number of triplets to approximate the representation ability of whole original triplets obtained by batch-manner methods. Then, OPML employs a closed-form solution to update the metric for new coming samples, which leads to a low space (i.e., O(d)O(d)) and time (i.e., O(d2)O(d^2)) complexity, where dd is the feature dimensionality. In addition, an extension of OPML (namely COPML) is further proposed to enhance the robustness when in real case the first several samples come from the same class (i.e., cold start problem). In the experiments, we have systematically evaluated our methods (OPML and COPML) on three typical tasks, including UCI data classification, face verification, and abnormal event detection in videos, which aims to fully evaluate the proposed methods on different sample number, different feature dimensionalities and different feature extraction ways (i.e., hand-crafted and deeply-learned). The results show that OPML and COPML can obtain the promising performance with a very low computational cost. Also, the effectiveness of COPML under the cold start setting is experimentally verified.Comment: 12 page

    Breaking the curse of nonregularity with subagging: inference of the mean outcome under optimal treatment regimes

    Get PDF
    Precision medicine is an emerging medical approach that allows physicians to select the treatment options based on individual patient information. The goal of precision medicine is to identify the optimal treatment regime (OTR) that yields the most favorable clinical outcome. Prior to adopting any OTR in clinical practice, it is crucial to know the impact of implementing such a policy. Although considerable research has been devoted to estimating the OTR in the literature, less attention has been paid to statistical inference of the OTR. Challenges arise in the nonregular cases where the OTR is not uniquely defined. To deal with nonregularity, we develop a novel inference method for the mean outcome under an OTR (the optimal value function) based on subsample aggregating (subagging). The proposed method can be applied to multi-stage studies where treatments are sequentially assigned over time. Bootstrap aggregating (bagging) and subagging have been recognized as effective variance reduction techniques to improve unstable estimators or classifiers (Buhlmann and Yu, 2002). However, it remains unknown whether these approaches can yield valid inference results. We show the proposed confidence interval (CI) for the optimal value function achieves nominal coverage. In addition, due to the variance reduction effect of subagging, our method enjoys certain statistical optimality. Specifically, we show that the mean squared error of the proposed value estimator is strictly smaller than that based on the simple sample-splitting estimator in the nonregular cases. Moreover, under certain conditions, the length of our proposed CI is shown to be on average shorter than CIs constructed based on the existing state-of-the-art method (Luedtke and van der Laan, 2016) and the \oracle"method which works as well as if an OTR were known. Extensive numerical studies are conducted to back up our theoretical findings

    A sparse random projection-based test for overall qualitative treatment effects

    Get PDF
    In contrast to the classical “one-size-fits-all” approach, precision medicine proposes the customization of individualized treatment regimes to account for patients’ heterogeneity in response to treatments. Most of existing works in the literature focused on estimating optimal individualized treatment regimes. However, there has been less attention devoted to hypothesis testing regarding the existence of overall qualitative treatment effects, especially when there are a large number of prognostic covariates. When covariates do not have qualitative treatment effects, the optimal treatment regime will assign the same treatment to all patients regardless of their covariate values. In this article, we consider testing the overall qualitative treatment effects of patients’ prognostic covariates in a high-dimensional setting. We propose a sample splitting method to construct the test statistic, based on a nonparametric estimator of the contrast function. When the dimension of covariates is large, we construct the test based on sparse random projections of covariates into a low-dimensional space. We prove the consistency of our test statistic. In the regular cases, we show the asymptotic power function of our test statistic is asymptotically the same as the “oracle” test statistic which is constructed based on the “optimal” projection matrix. Simulation studies and real data applications validate our theoretical findings. Supplementary materials for this article are available online

    A massive data framework for M-estimators with cubic-rate

    Get PDF
    The divide and conquer method is a common strategy for handling massive data. In this article, we study the divide and conquer method for cubic-rate estimators under the massive data framework. We develop a general theory for establishing the asymptotic distribution of the aggregated M-estimators using a weighted average with weights depending on the subgroup sample sizes. Under certain condition on the growing rate of the number of subgroups, the resulting aggregated estimators are shown to have faster convergence rate and asymptotic normal distribution, which are more tractable in both computation and inference than the original M-estimators based on pooled data. Our theory applies to a wide class of M-estimators with cube root convergence rate, including the location estimator, maximum score estimator, and value search estimator. Empirical performance via simulations and a real data application also validate our theoretical findings. Supplementary materials for this article are available online

    Upper bound analysis of differential velocity sideways extrusion process for curved profiles using a fan-shaped flow line model

    Get PDF
    An analytical model for predicting the shapes of rectangular bars with variable curvatures along their lengths through a novel forming method, differential velocity sideways extrusion (DVSE), previously proposed by the authors, has been developed on the basis of the upper bound method. A new flow line function was presented to describe its deformation field. The plastic deformation zone (PDZ) was assumed to be fan-shaped, where the trajectory of the material flow within the PDZ had an elliptic shape. The proposed continuous flow line function was validated using finite element simulations. The flow patterns, extrusion pressure, curvature, and effective strain predicted by the analytical solutions agreed well with modelling results. Compared to the classical discontinuous simple shear model of channel angular extrusion (CAE) with a 90° die, the new approach was shown to predict the effective strain more closely

    On testing conditional qualitative treatment effects

    Get PDF
    Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set
    • …
    corecore