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ON TESTING CONDITIONAL QUALITATIVE

TREATMENT EFFECTS

By Chengchun Shi∗,†, Rui Song∗,† and Wenbin Lu∗

North Carolina State University

Precision medicine is an emerging medical paradigm that focuses
on finding the most effective treatment strategy tailored for individ-
ual patients. In the literature, most of the existing works focused on
estimating the optimal treatment regime. However, there has been
less attention devoted to hypothesis testing regarding the optimal
treatment regime. In this paper, we first introduce the notion of
conditional qualitative treatment effects (CQTE) of a set of variables
given another set of variables and provide a class of equivalent repre-
sentations for the null hypothesis of no CQTE. The proposed defini-
tion of CQTE does not assume any parametric form for the optimal
treatment rule and plays an important role for assessing the incre-
mental value of a set of new variables in optimal treatment decision
making conditional on an existing set of prescriptive variables. We
then propose novel testing procedures for no CQTE based on ker-
nel estimation of the conditional contrast functions. We show that
our test statistics have asymptotically correct size and non-negligible
power against some nonstandard local alternatives. The empirical
performance of the proposed tests are evaluated by simulations and
an application to an AIDS data set.

1. Introduction. Precision medicine is an emerging medical paradigm
for finding the best treatment for individual patients by taking their charac-
teristics into consideration. The goal is to find the optimal treatment regime
that will give the most favorable clinical outcome of interest on average. A
number of methods have been developed for estimating the optimal treat-
ment regime as a function of prognostic covariates, including Q-learning
(Watkins and Dayan, 1992; Chakraborty, Murphy and Strecher, 2010), A-
learning (Robins, Hernan and Brumback, 2000; Murphy, 2003), direct value
optimization methods (Zhang et al., 2012, 2013) and outcome-weighted
learning (Zhao et al., 2012, 2015). Qian and Murphy (2011) proposed to
estimate the optimal treatment regime based on the estimated mean out-
come model with the lasso penalty. Zhang et al. (2015) and Zhang et al.
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(2016) proposed to construct interpretable optimal treatment regimes via
decision lists.

However, there has been less attention devoted to hypothesis testing re-
garding the optimal treatment regime. Chang, Lee and Whang (2015) and
Hsu (2017) considered testing whether the conditional treatment effects
given a set of covariates are always nonpositive. This amounts to testing
the overall qualitative treatment effects of the covariates. When the null
hypothesis holds, the optimal treatment regime will recommend the control
treatment to all patients regardless of their prognostic covariates. Such type
of null hypothesis is closely connected to testing conditional moment inequal-
ities, see for example Andrews and Shi (2013, 2014); Chernozhukov, Lee and
Rosen (2013); Armstrong and Chan (2016) and the references therein.

In this work, we develop a novel testing procedure for conditional qual-
itative treatment effects (CQTE) of a set of variables given another set of
variables. The contributions of this paper can be summarized as three folds.
First, we mathematically formalize the notion of CQTE without assuming
any parametric form of the treatment-covariates interactions and systemati-
cally characterize several equivalent representations of no CQTE. Informally
speaking, a variable is said to have no qualitative treatment effects condi-
tional on other variables if including it in treatment decision can not lead
to a treatment regime that increases the value function. It naturally gener-
alizes the definition for the qualitative interaction of a single covariate and
treatment given in Gunter, Zhu and Murphy (2011) and the definition for
the overall qualitative treatment effects.

Our second contribution is to propose robust test statistics based on a ker-
nel estimator for the conditional treatment effects for testing the existence
of CQTE, which do not require the specification of the outcome model and
the parametric form of treatment decision rules. To the best of our knowl-
edge, this is the first time that such hypothesis testing problems are formally
studied. Gunter, Zhu and Murphy (2011) proposed the S-score to quantify
the magnitude of the qualitative interaction between a single covariate and
treatment. However, no theoretical justifications were provided for the pro-
posed S-score.

Compared with the global tests in Chang, Lee and Whang (2015) and Hsu
(2017), our proposed tests for the CQTE can offer a new and important tool
for assessing the incremental value of a set of new variables in optimal treat-
ment decision making conditional on an existing set of qualitative covariates.
Take the AIDS Clinical Trials Group Protocol 175 (ACTG175) study as an
example. Many works in the literature have found that the age variable has
significant qualitative interaction with the treatment (Lu, Zhang and Zeng,
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2013; Fan et al., 2017). It is therefore of great importance to explore the
CQTE of a new variable or a set of new variables given the age variable.
The proposed tests can also help to construct the optimal treatment regime.
When the null hypothesis of no CQTE is rejected, we conclude that includ-
ing the new variables in treatment decision can increase the value function.
Therefore, it is more desirable to construct the optimal treatment regime
based on both the new and existing sets of variables.

Using the Poissonization technique (Giné, Mason and Zaitsev, 2003), we
show that our test statistic has correct size under the null and non-negligible
powers against some nonstandard local alternatives. To deal with data from
observational studies, we further introduce a doubly-robust test statistic
that is consistent when either the propensity score model or the conditional
mean models for the response are correctly specified.

Thirdly, the proposed test can help to discover new variables with the
CQTE. Specifically, we develop a procedure for selecting qualitative variables
in a sequential order based on the p-values of the proposed CQTE test. For
simplicity, we only consider forward selection in this paper. Backward or
stepwise selection procedure can be similarly developed.

The rest of the paper is organized as follows. We present the definition of
CQTE and a class of equivalent representations for the null hypothesis of no
CQTE in Section 2. Our proposed testing statistic and its asymptotic prop-
erties under the null, fixed alternative and nonstandard local alternatives are
given in Section 3. In Section 4, we extend our testing procedure to the case
where the propensity score is unknown and needs to be estimated from data,
and introduce a doubly-robust version of the test statistic. Some implemen-
tation issues are discussed in Section 5. Simulations studies are conducted
to evaluate the empirical performance of the proposed test in Section 6, fol-
lowed by an application to an AIDS clinical trial data in Section 7. Here,
variables with qualitative treatment effects are selected in a forward selec-
tion procedure based on the proposed test. A discussion is given in Section
8 and all technical proofs are given in the Supplementary Appendix.

2. Conditional qualitative treatment effects.

2.1. Optimal treatment regime. For simplicity we focus on a single stage
study with two treatment options. Assume data are summarized as Oi =
(Xi, Ai, Yi), i = 1, . . . , n, where, for subject i, Xi ∈ R

p denotes the baseline
covariates, Ai = 0/1 denotes the treatment received, and Yi denotes the pa-
tient’s response of interest. Here, a larger value of Yi represents a better clin-
ical outcome. We assume Oi’s are i.i.d. copies of the triplet O = (X,A, Y ).
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Consider the following semiparametric model for Y ,

Y = h0(X) +Aτ0(X) + e,(2.1)

where E(e|X,A) = 0, h0(·) is the baseline effect function, and τ0(x) =
E(Y |X = x,A = 1) − E(Y |X = x,A = 0) is referred to as the contrast
function.

The optimal treatment regime is defined in the potential outcome frame-
work. Let Y ∗(0) and Y ∗(1) be the potential outcomes that might be observed
under treatment 0 and 1, respectively. A treatment regime d(x) is a map
defined on R

p → {0, 1}. For a given regime d, consider the potential outcome

Y ∗(d) = Y ∗(0){1− d(X)}+ Y ∗(1)d(X).

The optimal treatment regime is the map that maximizes the expected po-
tential outcome, named the value function,

dopt = argmax
d

E{Y ∗(d)}.

As in (Rubin, 1974), we assume the following two assumptions hold: (i) sta-
ble unit treatment value assumption (SUTVA), Y = Y ∗(1)A+Y ∗(0)(1−A);
and (ii) no unmeasured confounders assumption, (Y ∗(0), Y ∗(1)) are indepen-
dent of A givenX. Under model (2.1), we have τ0(x) = E{Y ∗(1)−Y ∗(0)|X =
x}, and

dopt(x) = I{τ0(x) ≥ 0},

where I(·) denotes the indicator function.

2.2. Conditional qualitative treatment effects. In treatment decision mak-
ing, Gunter, Zhu and Murphy (2011) made a distinction between predic-
tive and prescriptive variables. In particular, the prescriptive variables have
qualitative interaction with treatment, which are important for treatment
prescription. They gave a formal definition of the qualitative interaction be-
tween a single covariate and treatment. We first extend the definition by
introducing the notion of conditional qualitative treatment effects (CQTE).
Let B and C be two disjoint subsets of I ≡ {1, 2, . . . , p}. Denoted by pB and
pC the number of elements in B and C, respectively. For any D ⊆ I, we use
XD to denote the sub-vector of X, formed by the elements indexed in D.
When D is a single-element set, i.e, D = j0 for some j0 ∈ I, we write XD

as X(j0). Moreover, we use |D| to denote the cardinality of D.
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Definition 2.1 (CQTE). Variables in C have qualitative treatment ef-
fect conditional on variables in B if there exist some nonempty sets C1,
C2 ⊆ R

pC , B ⊆ R
pB , such that (i)

Pr
{
(XB, XC) ∈ B × C1

}
> 0, and Pr

{
(XB, XC) ∈ B × C2

}
> 0;

and (ii) for any xC1 ∈ C1, xC2 ∈ C2 and xB ∈ B, we have

argmax
a

E
{
Y ∗(a)|XB = xB, X

C = xC1

}
(2.2)

̸= argmax
a

E
{
Y ∗(a)|XB = xB, X

C = xC2

}
.

Remark 2.1. For any j = 1, 2, when

E
{
Y ∗(1)|XB = xB, X

C = xCj

}
= E

{
Y ∗(0)|XB = xB, X

C = xCj

}
,

the argmax in (2.2) is not unique. For any two functions ψ1(a) and ψ2(a),
we define argmaxa ψ1(a) ̸= argmaxa ψ2(a) if any maximizer of ψ1 is not the
maximizer of ψ2 or vice versa.

Restricting B = ∅ and pC = 1, we obtain a similar definition of the qual-
itative interaction between a single covariate and treatment as in Gunter,
Zhu and Murphy (2011). For an arbitrary subset D ⊆ I, let

τD0 (xD) = E{τ0(X)|XD = xD}.

We now introduce the optimal treatment regime dDopt based on covariates

in a subset D ⊆ I. Similar to the definition of dopt, we define dDopt to be
the treatment regime that maximizes the value function among the class of
treatment regimes based only on covariates XD. Specifically,

dDopt = argmax
dD

E{Y ∗(dD)},

where the maximum is taken over all possible maps dD : XD → {0, 1}.
Under Model (2.1), along with the SUTVA and no unmeasured con-

founders assumptions, for a given treatment regime dD, we have

E{Y ∗(dD)} = E{Y ∗(0) + τ0(X)dD(XD)}(2.3)

= E{Y ∗(0)}+ E[E{τ0(X)|XD = XD}dD(XD)]

= E{Y ∗(0)}+ E{τD0 (XD)dD(XD)}.

It follows from (2.3) that

dDopt(xD) = I{τD0 (xD) ≥ 0}.
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The aim of this paper is to test the following null hypothesis:

H0 : XC does not have CQTE given XB,

against the alternative

H1 : X
C has CQTE given XB.

Let W = B∪C. To better understand the null, we introduce some examples
below.

Example 1 (Testing unconditional qualitative treatment effects). Let B =
∅. Then for any set C ⊆ I and we are testing whether XC has qualitative
treatment effects. When it does, we can find two nonempty sets Ω1 and Ω2

such that Pr(XC ∈ Ω1) > 0,Pr(XC ∈ Ω2) > 0, and τC0 (·) > 0 on Ω1 while
τC0 (·) < 0 on Ω2. Hence, it is equivalent to test the null hypothesis

τC0 (XC) ≥ 0, a.s, or τC0 (XC) ≤ 0, a.s.

Example 2 (Testing conditional qualitative treatment effects). Assume we
know covariates XB have qualitative treatment effects. Our focus is to test
whether some additional variables XC are “important” in decision making
given XB. Here, the “importance” is measured by the difference of the value
functions under regimes dWopt and d

B
opt. As we will see below, this definition is

equivalent to the conditional qualitative treatment effects of XC given XB.

Define the error rate

ERW,B =





0, if τW0 (XW ) = 0, a.s.
E[|dWopt(XW )− dBopt(XB)|I{τW0 (XW ) ̸= 0}]

Pr{τW0 (XW ) ̸= 0} , otherwise,

and the difference of the value function

VDW,B = E{Y ∗(dWopt)} − E{Y ∗(dBopt)}
= E[τ0(X){dWopt(XW )− dBopt(XB)}]
= E[τW0 (XW ){dWopt(XW )− dBopt(XB)}].(2.4)

The error rate measures the proportion that the treatment regime dBopt makes

a different decision compared with dWopt. When τW0 (XW ) ̸= 0, a.s, ERW,B is
equal to

ERW,B
∗ = E|dWopt(XW )− dBopt(XB)|.(2.5)
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For the value difference, it follows from (2.4) that VDW,B ≥ 0.
Denoted by ΩW = ΩB × ΩC the support of XW . We assume ΩB and ΩC

are open subsets in R
pB and R

pC , respectively. In addition, the density fW of
XW is absolutely continuous with respect to the Lebesgue measure ν. We use
subscripts and write xW (or xB, xC) to refer to an arbitrary |W |-dimensional
(or |B|, |C|-dimensional) vector. For any xW ∈ ΩW , we write xW,B and xW,C

to denote the corresponding sub-vectors of xW formed by elements in B and
C. If B (or C) is a single-element set, i.e, B = {j0}, we write xB, xW,B as
x(j0) and xW,(j0). When W = I, we omit the subscript W and write xW,B

as xB. For notational convenience, we write τW0 (xW ) = τW0 (xW,B, xW,C) for
any xW ∈ ΩW .

Theorem 2.2 (Characterization of the null). Assume that τW0 (·) and
τB0 (·) are continuous, and E{τW0 (XW )}2 < ∞. Then, the followings are
equivalent:

(i) H0 holds.
(ii) VDW,B = 0.
(iii) ERW,B = 0.
(iv) For any xW such that τW0 (xW ) ̸= 0, we have dWopt(xW ) = dBopt(xW,B).

(v) For any xB ∈ ΩB, we have τW0 (xW ) ≥ 0 for all xW ∈ ΩW such that
xW,B = xB or τW0 (xW ) ≤ 0 for all xW ∈ ΩW such that xW,B = xB.

Remark 2.3. Theorem 2.2 provides the sufficient and necessary condi-
tions for CQTE. Results in (iv) and (v) hold for any x, instead of almost
surely. This is due to the continuity of τW0 (·) and fW (·). Result (ii) suggests
VDW,B > 0 if H1 holds. By definition, this means that variables in XC have
CQTE given XB if and only if the optimal regime obtained based on XB

and XC together can yield a larger value function than that based on XB

only.

Remark 2.4. Result (iii) implies when H0 holds, we have ERW,B = 0.
However, it can not guarantee that ERW,B

∗ defined in (2.5) is equal to 0. We
provide a counter example below. Let p = 2, B = {2}, C = {1} and hence
W = I = {1, 2}. Let τ0(x) = τW0 (xW ) = [x(1)]+(x(2) − 1), where [y]+ =
max(0, y) for any y ∈ R. Apparently, H0 holds under this setting. When
X(1) and X(2) are independent, we obtain τB0 (x(2)) = (x(2) − 1)E[X(1)]+.

Suppose X(2) < 1 a.s. and E[X(1)]+ > 0. If Pr(X(1) ≤ 0) > 0, we have

Pr(X(1) ≤ 0) = Pr{τW0 (XW ) ≥ 0} = EdWopt(X
W )

̸= EdBopt(X
B) = Pr{τB0 (X(2)) ≥ 0} = 0.



8 C. SHI, R. SONG AND W. LU

Thus, ERW,B
∗ ̸= 0 if Pr(X(1) ≤ 0) > 0.

Remark 2.5. Assertion (iv) motivates us to consider the following test
statistic for H0

SW,B =

∫

xW∈ΩW

φ{τW0 (xW )}{dWopt(xW )− dBopt(xW,B)}ω0(xW )dxW ,

where φ(·) is a monotonically increasing function with φ(0) = 0 and ω0(xW )
is a nonnegative weight function. Obviously we have SW,B ≥ 0. When H0

holds, by Theorem 2.2, we obtain SW,B = 0. Taking φ to be the iden-
tity function and ω0(xW ) = fW (xW ), we obtain SW,B = VDW,B. When
ω0(xW ) = fW (xW )/Pr{τW0 (XW ) ̸= 0} and φ(z) = sgn(z) where

sgn(z) =





1, z > 0,
0, z = 0,
−1, z < 0,

we have SW,B = ERW,B. More generally, we can let φ(z) = sgn(z)|z|q for
some q ≥ 0. The defined SW,B then becomes an Lq+1 type functional. Al-
ternatively, we can consider the following supremum-type test statistic

sup
xW∈ΩW

φ{τW0 (xW )}{dWopt(xW )− dBopt(xW,B)}ω0(xW ).(2.6)

In Section 13 of the supplementary article, we develop a consistent testing
procedure based on (2.6). In these statistics, function φ{τW0 (xW )} represents
the magnitude of treatment effects, while the difference of two indicators
characterizes the discrepancy between the regimes dBopt and d

W
opt. We formally

introduce our test statistic in the next section.

3. Testing procedure. We first introduce nonparametric estimators
of τW0 and τB0 . Define the propensity score π(x) = Pr(A = 1|X = x).
In a randomized study, πi ≡ π(Xi) is a constant and known. In this Sec-
tion, we assume the propensity score is correctly specified. In the next Sec-
tion, we propose a doubly robust test, which allows the misspecification
of the propensity score. Consider the following nonparametric estimator of
τW0 (xW )fW (xW ):

τWn (xW ) =
1

n

n∑

i=1

(
Ai

πi
− 1−Ai

1− πi

)
YiK

W
hW

(xW −XW
i ),

where KW
hW

(·) is a multivariate kernel function. In general, KW
hW

(·) can be
taken as a pW -variate density function with pW = pB + pC and hW being a



9

symmetric positive definite matrix as discussed in Wand and Jones (1993).
In practice, for simplicity, we may take KW

hW
(·) as a product of component-

wise kernel functions, i.e., KW
hW

(xW −XW
i ) =

∏
j∈W (hW,j)

−1K(
xW,(j)−X

(j)
i

hj
),

where K(·) is a symmetric density function. For notational convenience, we

set hW,1 = · · ·hW,p = hW , and writeKW
hW

(xW−XW
i ) = (hW )−pWKW (

xW−XW
i

hW
).

Note that the propensity score πi is a function of Xi not just XW
i . Under

the SUTVA and no unmeasured confounders assumptions, we can show that
τWn (xW ) is a consistent estimator of τW0 (xW )fW (xW ).

Let fB(·) denote the density function of XB. Similarly, a nonparametric
estimator of τB0 (xB)f

B(xB) is given by

τBn (xB) =
1

n

n∑

i=1

(
Ai

πi
− 1−Ai

1− πi

)
YiK

B
hB

(xB −XB
i ).

Based on Remark 2.5, it’s natural to consider the test statistic based on

SW,B
n =

∫

xW∈ΩW

τWn (xW ){dWn (xW )− dBn (xW,B)}dxW ,(3.1)

where dWn (xW ) = I{τWn (xW ) ≥ 0} and dBn (xW,B) = I{τBn (xW,B) ≥ 0}, are
corresponding estimators for dWopt(xW ) and dBopt(xW,B) respectively.

Remark 3.1. When some of the covariates are discrete, we need to modify
the integral in (3.1) by some product measure of Lebesgue and counting
measures. For notational convenience, in Sections 3 and 4, we assume XW

is continuous. In numerical studies, we allow some covariates to be discrete
when implementing our test. Details about the test statistic with discrete
covariates can be found in Section 5.

Under certain regularity conditions, we will show that there exist some
positive sequences {an} and {σn} such that

√
nSW,B

n − an
σn

d→ N(0, 1),

under the null. To construct the test statistic, we replace an and σn by
some appropriate estimators ān and σ̄n, and reject the null when TW,B

n =
(
√
nSW,B

n − ān)/σ̄n > zα where zα is the upper α-quantile of a standard
normal distribution. Below we introduce our test statistic which is a slightly
modified version of TW,B

n .
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3.1. Test statistic. Consider the following test statistic

S̃W,B
n =

∫

xW∈ΩW

τWn (xW ){dWn (xW )− dBn (xW,B)}I(xW /∈ Ê)dxW ,(3.2)

where

Ê =

{
xW ∈ ΩW :

∣∣∣∣∣
τWn (xW )

f̂W (xW )

∣∣∣∣∣ ≤ ηn,
∣∣∣∣∣
τBn (xW,B)

f̂B(xW,B)

∣∣∣∣∣ ≤ ηn
}
,

for some sequence ηn → 0. Here, f̂W and f̂B are the kernel density estimators
of fW and fB, respectively. Specifically,

f̂W (xW ) =
1

n

n∑

i=1

KW
hW

(xW −XW
i ), f̂B(xB) =

1

n

n∑

i=1

KB
hB

(xB −XB
i ).

Estimators τWn (xW )/f̂W (xW ) and τBn (xB)/f̂B(xB) are referred to as the
Nadaraya-Watson estimators for τW0 (xW ) and τB0 (xB).

Similar to SW,B
n , we can show (

√
nS̃W,B

n − ãn)/σ̃n d→ N(0, 1), for some ãn
and σ̃n. The tests based on SW,B

n and S̃W,B
n have nontrivial power against

certain local alternative as defined later. However, the one based on S̃W,B
n is

more powerful. To see this, note that

√
n(SW,B

n − S̃W,B
n )(3.3)

=
√
n

∫

xW∈ΩW

τWn (xW ){dWn (xW )− dBn (xW,B)}I(x ∈ Ê)dxW .

With proper choice of ηn, the right-hand side (RHS) of (3.3) is equivalent
to

√
n

∫

xW∈ΩW

τWn (xW ){dWn (xW )− dBn (xW,B)}I(xW ∈ E0)dxW ,(3.4)

where E0 = {xW : τW0 (xW ) = 0, τB0 (xW,B) = 0}.
The asymptotic mean of (3.4) remains the same under the null and local

alternative. However, it has non-degenerate variance and is asymptotically
independent of S̃W,B

n . This implies that
√
nSW,B

n −an and
√
nS̃W,B

n − ãn have
the same shifted mean under the local alternative, but the variance of S̃W,B

n

is smaller than SW,B
n when the set E0 has nonzero measure. From now on,

we focus on the test statistic S̃W,B
n .
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3.2. Consistency of the test. Define

µW (xW ) = E

[{
A

π(X)
− 1−A

1− π(X)

}2

Y 2|XW = xW

]
fW (xW )KW

∗ (0),

where

KW
∗ (t) =

∫

xW

KW (xW )KW (xW + t)dxW .

For each fixed xW , µW (xW ) is the asymptotic variance of
√
n(hW )pW τWn (xW ).

Define F0 = {xW ∈ ΩW : τW0 (xW ) = 0, τB0 (xB) ̸= 0}. The asymptotic

mean and variance of
√
nS̃W,B

n are given by

ãn =
1√

2π(hW )pW

∫

xW∈F0

√
µWn (xW )dxW ,

σ̃2 =

∫
xW∈F0

t∈[−1,1]pW

µW (xW )cov(max{
√

1− ρ2(t)Z1 + ρ(t)Z2, 0},max{Z2, 0})dxWdt,

where Z1 and Z2 are independent standard normal random variables, ρ(t) =
KW

∗ (t)/KW
∗ (0), and

µWn (xW ) =
1

(hW )pWKW
∗ (0)

E

[
µW (XW )

fW (XW )

{
KW

(
xW −XW

hW

)}2
]
.

To estimate ãn and σ̃2, we first provide nonparametric estimators for
µW (xW ) and F0. Define

µ̂Wn (xW ) =
1

n(hW )pW

n∑

i=1

{(
Ai

πi
− 1−Ai

1− πi

)
Yi

}2{
KW

(
xW −XW

i

hW

)}2

,

F̂ = {xW ∈ ΩW : |τWn (xW )/f̂W (xW )| ≤ ηn, |τBn (xW,B)/f̂
B(xW,B)| > ηn},

where ηn is defined in (3.2). For any set F ⊆ Ω, define ân(F ) and σ̂
2
n(F ) as

ân(F ) =
1√

2π(hW )pW

∫

xW∈F

√
µ̂Wn (xW )dxW ,

σ̂2n(F ) =

∫
xW∈F

t∈[−1,1]pW

µ̂Wn (xW )cov(max{
√

1− ρ2(t)Z1 + ρ(t)Z2, 0},max{Z2, 0})

×dxWdt.

We estimate ãn and σ̃2n by ân(F̂ ) and σ̂
2
n(F̂ ), respectively.
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Let ν(·) be the Lebesgue measure. Define the test statistic

T̃W,B
n =

{
{√nS̃W,B

n − ân(F̂ )}/σ̂n(F̂ ), if ν(F̂ ) ̸= 0,

{√nS̃W,B
n − ân(ΩW )}/σ̂n(ΩW ), otherwise.

We reject the null when T̃W,B
n > zα.

Remark 3.2. When ν(F̂ ) = 0, σ̂n(F̂ ) = 0 and hence the test statistic
{√nS̃W,B

n − ân(F̂ )}/σ̂n(F̂ ) is not well defined. Therefore, in this case we
consider {√nS̃W,B

n − ân(Ω
W )}/σ̂n(ΩW ) instead. When F0 is a strict sub-

set of Ω, the test statistic based on {√nS̃W,B
n − ân(ΩW )}/σ̂n(ΩW ) will be

conservative.

We write an ≍ bn for two sequences {an}, {bn} if there exist some universal
constants c, C > 0 such that cbn ≤ an ≤ Cbn. To study the theoretical
properties of the test, we first introduce some conditions.

(A1.) Assume that ΩW is a bounded subset in R
pW . Assume fW is con-

tinuous and satisfies infxW∈ΩW fW (xW ) > 0, and supxW∈ΩW fW (xW ) <∞.
Assume τW0 and τB0 are continuous. Moreover, fW , τW0 , fB and τB0 are s-
times differentiable almost everywhere with uniformly bounded derivatives,
for some integer s > 0.
(A2.) AssumeKW (xW ) =

∏pW
j=1Kj(x(j)), andK

B(xB) =
∏pB

j=1Kj+pW (x(j)),
where eachKj is an s-order kernel function with support {µ ∈ R : |µ| ≤ 1/2}
and bounded, and is of bounded variation and integrates to 1.
(A3.) Assume E exp(t|Y |) <∞ for some t > 0, and supxW∈ΩW E(Y 4|XW =
xW , A = a) <∞ for a = 0, 1.
(A4.) Assume there exist some constants c0 and c1 that 0 < c0 ≤ π(x) ≤
c1 < 1, ∀x.
(A5.) Assume that µW (xW ) is uniformly continuous and bounded on ΩW ,
and infxW∈ΩW µW (xW ) > 0.
(A6.) Assume n(hW )2pW / log n→∞, n(hW )2s → 0, hpBB ≍ h

pW
W .

(A7.) Assume ν(∂F0) = 0, ν(ΩW ∩ F c
0 ) > 0. Assume there exist some con-

stants ξ0, c̄0 > 0 such that for any sufficiently small t, ε > 0,

ν({xW : 0 < |τW0 (xW )| ≤ t}) = O(tξ0), ν({xB : 0 < |τB0 (xB)| ≤ t}) = O(tξ0),

ν({xW : 0 < |τW0 (xW )| ≤ t, |τB0 (xB)| > (1 + ε)t}) ≥ c̄0tξ0 .

(A8.) Assume ηn satisfies η2ξ0n ≫ logξ0+1 n/{n(hW )pW }ξ0 and nη2ξ0+2
n → 0.

Remark 3.3. Condition (A1) requires ΩW to be bounded. In practice, if it’s
unbounded, we can perform monotone transformations on each component
of X to make the support of the transformed variables bounded. Otherwise,
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we need to focus on a bounded subset ΩW
0 = ΩB

0 × ΩC
0 ⊆ ΩW , and write

S̃W,B
n as∫

xW∈ΩW
0

τWn (xW ){dWn (xW )− dBn (xW,B)}I(xW /∈ Ê)dxW .

In addition, we modifyH0 as “For any fixed xB ∈ ΩB
0 , τ0(xB, xC) ≥ 0, ∀xC ∈

ΩC
0 , or τ0(xB, xC) ≥ 0, ∀xC ∈ ΩC

0 .”

Remark 3.4. Condition (A2) requires eachKj to be of order s. The order of
the kernel is defined as the first nonzero moment. Condition (A6) requires
nh2 → ∞ and nh2s/pW → 0. This implies s > pW . When pW > 2, this
condition requires each kernel Kj to be of high orders. Such kernels are
typically referred to as the bias-reducing kernels. Unlike standard kernel
functions, these kernels allowKj(z) to be negative for some z ∈ R. Moreover,
we assume hpWW ≍ hpBB in (A6). This guarantees τWn (xW ) and τBn (xW,B)
converge at the same rate.

Remark 3.5. Conditions (A7) is not restrictive. Obviously, this condition
holds when infxW∈ΩW |τW0 (xW )| > 0. In that case, we can set the constants ξ0
and c̄0 to be any positive constants. Moreover, these conditions are satisfied
in many other cases. For example, let p = 2, B = {2}, C = {1}. Consider

τ0(x(1), x(2)) =





−(x(1) + x(2))
1/ξ0 , if x(1), x(2) > 0,

−(x(1))1/ξ0 , if x(1) > 0, x(2) ≤ 0,

−(x(2))1/ξ0 , if x(1) ≤ 0, x(2) > 0,

0, otherwise.

Then, with some calculation, we can show

ν({x : 0 < |τ0(x(1), x(2))| ≤ t}) = ν({x : x(1), x(2) > 0, x(1) + x(2) ≤ t})
+ ν({x : 0 < x(1) ≤ t, x(2) ≤ 0}) + ν({x : x(1) ≤ 0, 0 < x(2) ≤ t}) = c1t

2ξ0 + c2t
ξ0 ,

for some constants c1, c2 > 0.

Note that |τ{2}0 (x(2))| ≥ min(x(2))
1/ξ0 when x(2) > 0, and τ

{2}
0 (x(2)) is a

nonzero constant c3 < 0 for all x(2) ≤ 0. For sufficiently small t > 0, we
obtain

ν
(
{x : 0 < |τ{2}0 (x(2))| ≤ t}

)
≤ ν

(
{x : (x(2))

1/ξ0 ≤ t, x(2) > 0}
)
= O(tξ0).

Besides, for any small ε0 > 0, we have

ν
(
{x : 0 < |τ0(x(1), x(2))| ≤ t, |τ{2}0 (x(2))| > (1 + ε0)t}

)

≥ ν
(
{x : 0 < |τ0(x(1), x(2))| ≤ t, τ{2}0 (x(2)) = −c3}

)

= ν
(
{x : 0 < (x(1))

1/ξ0 ≤ t, x(2) ≤ 0}
)
= c4t

ξ0 ,
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for some constant c4 > 0. This verifies (A7).

Theorem 3.6. Assume Conditions (A1)-(A8) hold. Then, under H0,
we have

lim
n

Pr(T̃W,B
n > zα) ≤ α,

for 0 < α ≤ 0.5, where the equality holds when ν(F0) > 0.

Remark 3.7. Theorem 3.6 shows T̃W,B
n has correct size under H0. When

ν(F0) = 0, we can show with probability tending to 1,
√
nS̃W,B

n ≤ ân, and
hence

lim
n

Pr(T̃W,B
n > zα) = 0.

When ν(F0) ̸= 0, we will show that T̃W,B
n is asymptotically normal. The

proof is based on the well-known Poissoinization technique which introduces
a Poissonized version of S̃W,B

n and transforms the integral into summation
of mean zero 1-dependent random fields (see for example Giné, Mason and
Zaitsev, 2003; Mason and Polonik, 2009; Chang, Lee and Whang, 2015).
The asymptotic normality thus follows by standard central limit theorem
for m-dependent random fields (Shergin, 1990). The details are given in the
Supplementary Appendix.

Theorem 3.8. Assume Conditions (A1)-(A8) hold. Then, under H1,
we have

lim
n

Pr(T̃W,B
n > zα)→ 1.

Remark 3.9. Theorem 3.8 shows T̃W,B
n having power going to 1 against

fixed alternatives. Together with Theorem 3.6, Theorem 3.8 suggests that
our testing procedure is consistent.

3.3. Local alternatives. In this subsection, we investigate the power of
the proposed test under local alternatives. We write τn,0(x) as the contrast
function and τDn,0(xD) = E{τn,0(X)|XD = xD} for a given subset D ⊆ I,
with the intention that these functions are allowed to vary with n. Consider
the following sequence of local alternatives:

Ha : τWn,0(xW ) = τW0 (xW ) + n−1/2δW0 (xW ),
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for some continuous functions τW0 and δW0 on ΩW , where for any fixed xB ∈
ΩB,

τW0 (xB, xC) ≤ 0 for any xC ∈ ΩC , or τW0 (xB, xC) ≥ 0 for any xC ∈ ΩC ,

and

δW0 (xB, xC) ≤ 0 for any xC ∈ ΩC , or δW0 (xB, xC) ≥ 0 for any xC ∈ ΩC .

In addition,

δW0 (xB, xC)τ
W
0 (xB, xC) ≤ 0, ∀xB ∈ ΩB, xC ∈ ΩC .

Recall that F0 = {xW ∈ ΩW : τW0 (xW ) = 0, τB0 (xW,B) ̸= 0}. Let Ḟ0 and ∂F0

denote its interior and boundary, respectively. Since the contrast function
τWn,0 varies with n, we state a more precise definition of conditional qualitative
treatment effects below.

Definition 3.1 (CQTE, continued). Variables in C have qualitative
treatment effects conditional on variables in B if there exists some nonempty
sets C1, C2 ∈ R

pC , B ∈ R
pB , such that (i)

Pr
{
(XB, XC)T ∈ B × C1

}
> 0, and Pr

{
(XB, XC)T ∈ B × C2

}
> 0;

and (ii) for any xC1 ∈ C1, xC2 ∈ C2 and xB ∈ B, there exists a sequence
nk →∞ as k →∞, such that

arg max
a=0,1

{
aτWnk,0

(xB, xC1)
}
̸= arg max

a=0,1

{
aτWnk,0

(xB, xC2)
}
.(3.5)

Remark 3.10. It’s immediate to see that (3.5) is a modified version of
(2.2) where we allow the conditional expectation E{Y ∗(a)|XB, XC} to vary
with n. By the definition of τW0 and δW0 , we can see that the magnitude of
δW0 affects CQTE. We provide a theorem which formally characterizes such
results below.

Theorem 3.11. Assume δW0 is continuous and bounded on ΩW . Assume
ν(∂F0) = 0. Under conditions in Theorem 2.2, the following statements are
equivalent:

(i) XC doesn’t have QTE conditional on XB.
(ii) For any ε > 0, there exist a set Nε and a positive integer nε such

that ν(Nε) ≤ ε, and for all n ≥ nε, the following holds: for any fixed
xB, we have τn,0(xW ) ≥ 0 for any xW /∈ Nε such that xW,B = xB or
τn,0(xW ) ≤ 0 for any xW /∈ Nε such that xW,B = xB.
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(iii) For all xW ∈ Ḟ0, δ
W
0 (xW ) = 0.

(iv)

∫

xW∈F0

|δW0 (xW )|fW (xW )dxW = 0.

Remark 3.12. Result (iv) implies H0 holds when Pr(XW ∈ F0) = 0, or
Pr{τW0 (XW ) = 0} = 0. This implies that the local alternatives are non-
standard and only exist in the nonregular cases, i.e., there is a positive
probability such that the optimal treatment decision based on XW is not
defined.

Remark 3.13. Theorem 3.11 suggests the quantity
∫

xW∈F0

|δW0 (xW )|fW (xW )dxW

plays a role in determining CQTE of XC conditional on XB. In the theorem
below, we establish the power of our test statistic T̃W,B

n under the local
alternatives. It can be seen that this quantity is closely related to the power
of our test.

Theorem 3.14. Assume Conditions (A1)-(A8) hold and that δW0 is
bounded on ΩW . Then, under Ha with

∫
xW∈F0

|δW0 (xW )|fW (xW )dxW > 0,
we have

lim
n

Pr(T̃W,B
n > zα) = 1− Φ

(
zα −

1

2σ̃

∫

xW∈F0

|δW0 (xW )|fW (xW )dxW

)
,

where Φ(z) = Pr(Z0 ≤ z) for a standard normal random variable Z0.

4. Doubly robust test statistic. In an observational study, the propen-
sity score πi’s are usually unknown. In practice, we posit a parametric model
π(x, α) for the propensity score, for example, a logistic regression model
π(x, α) = exp(xTα)/{1 + exp(xTα)}. We can obtain an estimator α̂ of α
based on data {(Ai, Xi), i = 1, . . . , n}, by either maximizing the likelihood
function or solving estimating equations. The estimator α̂ will converge to
some population-level parameters α0. When the model π(x, α) is correctly
specified, α0 is the true parameter in the model. When the model is wrong,
α0 corresponds to some least false parameters that have been widely studied
in the literature (cf. White, 1982; Li and Duan, 1989).

We also posit some parametric models Φ0(x, θ) and Φ1(x, ζ) for E(Y |X =
x,A = 0) and E(Y |X = x,A = 1), respectively. Let θ̂ and ζ̂ denote the
estimator of θ and ζ, respectively, which converge to some parameters θ0
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and ζ0, under potential model misspecification. Let π̂i = π(Xi, α̂), Φ̂0i =
Φ0(Xi, θ̂) and Φ̂1i = Φ1(Xi, ζ̂). Define the following doubly robust estimators
for τWn,0(xW )fW (xW ) and τBn,0(xB)f

B(xB):

τWn,DR(xW ) =
1

n

n∑

i=1

[{
Ai

π̂i
Yi −

(
Ai

π̂i
− 1

)
Φ̂1i

}

−
{
1−Ai

1− π̂i
Yi −

(
1−Ai

1− π̂i
− 1

)
Φ̂0i

}]
KW

hW
(xW −XW

i ),

τBn,DR(xB) =
1

n

n∑

i=1

[{
Ai

π̂i
Yi −

(
Ai

π̂i
− 1

)
Φ̂1i

}

−
{
1−Ai

1− π̂i
Yi −

(
1−Ai

1− π̂i
− 1

)
Φ̂0i

}]
KB

hB
(xB −XB

i ).

Remark 4.1. We can show that estimators τWn,DR(xW ) and τBn,DR(xB) are
consistent when either π(x, α) or Φ0(x, θ) and Φ1(x, ζ) are correctly speci-
fied.

Let dWn,DR(xW ) = I{τWn,DR(xW ) ≥ 0} and dBn,DR(xB) = I{τBn,DR(xB) ≥ 0}.
Consider

S̃W,B
n,DR =

∫

xW∈ΩW

τWn,DR(xW ){dWn,DR(xW )− dBn,DR(xW,B)}I(xW /∈ ÊDR)dxW ,

where

ÊDR =

{
xW ∈ ΩW :

∣∣∣∣∣
τWn,DR(xW )

f̂W (xW )

∣∣∣∣∣ ≤ ηn,
∣∣∣∣∣
τBn,DR(xW,B)

f̂B(xW,B)

∣∣∣∣∣ ≤ ηn
}
.

For any set F , define

ân,DR(F ) =
1√

2π(hW )pW

∫

xW∈F0

√
µ̂Wn,DR(xW )dxW ,

σ̂2n,DR(F ) =

∫

xW∈F

∫

t∈[−1,1]pW
µ̂Wn,DR(xW )cov(max{

√
1− ρ2(t)Z1 + ρ(t)Z2, 0},

max{Z2, 0})dxWdt,

where

µ̂Wn,DR(xW ) =
1

n(hW )pW

n∑

i=1

[{
Ai

π̂i
Yi −

(
Ai

π̂i
− 1

)
Φ̂1i

}

−
{
1−Ai

1− π̂i
Yi −

(
1−Ai

1− π̂i
− 1

)
Φ̂0i

}]2{
KW

(
xW −XW

i

hW

)}2

.
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We estimate the asymptotic mean and variance of
√
nS̃W,B

n,DR by ân,DR(F̂DR)

and σ̂2n,DR(F̂DR), respectively, with

F̂DR = {xW ∈ ΩW : |τWn,DR(xW )/f̂W (xW )| ≤ ηn, |τBn,DR(xW,B)/f̂
B(xW,B)| > ηn}.

Define

T̃W,B
n,DR =

{
{√nS̃W,B

n,DR − ân,DR(F̂DR)}/σ̂n,DR(F̂DR), if ν(F̂DR) = 0,

{√nS̃W,B
n,DR − ân,DR(Ω

W )}/σ̂n,DR(Ω
W ), otherwise.

We reject the null when T̃W,B
n,DR > zα.

To establish the asymptotic distributions of T̃W,B
n,DR under the null and

local alternative, we impose the following conditions.
(A4’.) Assume there exist some constants c′0 and c′1 such that 0 < c′0 ≤
π(x, α0) ≤ c′1 < 1 for all x ∈ Ω.
(A5’.) Assume that µWDR(xW ) is uniformly continuous and bounded on ΩW ,
and infxW∈ΩW µWDR(xW ) > 0, where

µWDR(xW ) = E

[{(
A

π(X,α0)
− 1−A

1− π(X,α0)

)
Y −

(
A

π(X,α0)
− 1

)
Φ1(X, θ0)

+

(
1−A

1− π(X,α0)
− 1

)
Φ0(X, ζ0)

}2

|XW = xW

]
fW (xW )KW

∗ (0).

(A9.) Assume that π(x, α) is twice continuously differentiable with respect
to α; ∥∂π(x, α0)/∂α∥2 is uniformly bounded for all x ∈ Ω; and the elements
in ∂2π(x, α)/∂α∂αT are uniformly bounded for all x ∈ Ω and α in a small
neighborhood of α0.
(A10.) Assume that Φ0(x, θ) and Φ1(x, ζ) are twice continuously differen-
tiable with respect to θ and ζ, respectively; Φ0(x, θ0), Φ1(x, ζ0), ∥∂Φ0(x, θ0)/∂θ∥2
and ∥∂Φ1(x, ζ)/∂ζ0∥2 are uniformly bounded for all x ∈ Ω; and the el-
ements in the matrices ∂2Φ0(x, θ)/∂θ∂θ

T and ∂2Φ1(x, ζ)/∂ζ∂ζ
T are uni-

formly bounded for all x ∈ Ω and θ, ζ in small neighborhoods of θ0 and ζ0,
respectively.
(A11.) Assume that the estimators α̂, θ̂ and ζ̂ have the following linear
representations

α̂− α0 =
1

n

∑

i

ξ1(Oi) + op

(
1√
n

)
,

θ̂ − θ0 =
1

n

∑

i

ξ2(Oi) + op

(
1√
n

)
,

ζ̂ − ζ0 =
1

n

∑

i

ξ3(Oi) + op

(
1√
n

)
,
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for some functions ξ1, ξ2 and ξ3 with E{ξj(Oi)} = 0 and E{ξj(Oi)ξ
T
j (Oi)} <

∞ for j = 1, 2, 3.

Remark 4.2. Conditions (A4’) and (A5’) are similar to (A4) and (A5).
Conditions (A9)-(A11) are required for establishing the asymptotic normal-
ity of the estimators for misspecified models (White, 1982).

Theorem 4.3 (Double robustness of T̃W,B
n,DR). Assume Conditions (A1)-

(A3), (A4’), (A5’) and (A6)-(A11) hold. In addition, assume either π(x, α)
or Φ0(x, θ) and Φ1(x, ζ) are correctly specified. Then, under H0, for any
0 < α ≤ 0.5, we have

lim
n

Pr(T̃W,B
n,DR > zα) ≤ α,

where the equality holds when ν(F0) > 0. In addition, under H1, we have

lim
n

Pr(T̃W,B
n,DR > zα)→ 1.

Remark 4.4. Theorem 4.3 establishes the consistency of the proposed dou-
bly robust test statistic T̃W,B

n,DR. Next, we establish the power of the test under
the local alternative.

Theorem 4.5. Assume Conditions in Theorem 4.3 hold. Under Ha, as-
sume that δW0 is continuous and bounded on ΩW , and

∫

xW∈F
|δW0 (xW )|fW (xW )dxW > 0.

Then, we have

lim
n

Pr(T̃W,B
n,DR > zα) ≥ 1− Φ

(
zα −

1

2σ̃DR

∫

xW∈F
|δW0 (xW )|fW (xW )dxW

)
.

Remark 4.6. For a given function δ0, the power of T̃
W,B
n,DR increases as σ̃DR

decreases. When the propensity score model is correctly specified, it can be
shown that for each xW ∈ ΩW , µWDR(xW ) achieves its minimum when

Φ0(x, θ0) = E(Y |X = x,A = 0),Φ1(x, ζ0) = E(Y |X = x,A = 1).(4.1)

Therefore, σ̃DR achieves its minimum if (4.1) holds. This suggests T̃W,B
n,DR

has the greatest power when the posited models for the propensity score
and conditional means of Y given X and A are correctly specified.
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5. Implementation details. In Sections 3 and 4, we only consider
continuous covariates for notational convenience. In this section, we present
a more general testing framework allowing both continuous and discrete co-
variates, and provide some implementation details. Specifically, we consider
the following two cases: (i) all covariates are discrete; and (ii) at least one
covariate is continuous. The test statistics are different in these two cases.
We focus on randomized studies and assume the propensity score is known.
A doubly-robust version of the test statistic can be similarly derived as in
Section 4 to deal with data from observational studies. We omit the details
to save space.

5.1. All covariates are discrete. When all covariates are discrete, for each
x, we calculate

τWn (xW ) =
1

n

n∑

i=1

(
Ai

πi
− 1−Ai

1− πi

)
YiI(X

W
i = xW ),

τBn (xB) =
1

n

n∑

i=1

(
Ai

πi
− 1−Ai

1− πi

)
YiI(X

B
i = xB),

f̂W (xW ) =
1

n

n∑

i=1

I(XW
i = xW ), f̂B(xB) =

1

n

n∑

i=1

I(XB
i = xB),

µ̂Wn (xW ) =
1

n

n∑

i=1

{(
Ai

πi
− 1−Ai

1− πi

)
YiI(X

W
i = xW )− τWn (xW )

}2

,

µ̂Bn (xB) =
1

n

n∑

i=1

{(
Ai

πi
− 1−Ai

1− πi

)
YiI(X

B
i = xB)− τBn (xB)

}2

.

Define

Ê =

{
xW ∈ ΩW :

∣∣∣∣∣
τWn (xW )

f̂W (xW )

∣∣∣∣∣ ≤ C1ηn,

∣∣∣∣∣
τBn (xW,B)

f̂B(xW,B)

∣∣∣∣∣ ≤ C2ηn

}
,(5.1)

F̂ =

{
xW ∈ ΩW :

∣∣∣∣∣
τWn (xW )

f̂W (xW )

∣∣∣∣∣ ≤ C1ηn,

∣∣∣∣∣
τBn (xW,B)

f̂B(xW,B)

∣∣∣∣∣ > C2ηn

}
.(5.2)

Compute

S̃W,B
n =

∑

xW /∈Ê

τWn (xW ){dWn (xW )− dBn (xW,B)}.

Unlike results in Section 3 and 4, the limiting distribution of S̃W,B
n is not

normal. If F̂ ̸= ∅, we reject the null when
√
nS̃W,B

n > ĉα(F̂ ) where ĉα(F ) is
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the upper α-quantile of the random variable
∑

xW∈F

√
µ̂Wn (xW )max(ZxW

, 0)

conditional on {µ̂Wn (xW )}xW∈ΩW , where {ZxW
}xW∈ΩW are independent stan-

dard normal random variables. Otherwise, we reject the null when
√
nS̃W,B

n >
ĉα(Ω

W ). A formal justification of the aforementioned testing procedure is
given in Section 14 of the supplementary article.

5.2. Not all covariates are discrete. Assume W = WC ∪WD and B =
BC ∪ BD, where WC , BC are the sets of continuous variables and WD, BD

are the sets of discrete covariates. Denoted by pWC
, pWD

, pBC
and pBD

the
numbers of elements in these sets. When pBC

> 0, define ωi = {Ai/πi− (1−
Ai)/(1− πi)}Yi and

τWn (xW ) =
1

n
∏

j∈WC
(ŝjhW )

n∑

i=1

ωi

∏

j∈WC

K

(
xW,(j) −X(j)

i

ŝjhW

)
I(xWD

= XWD

i ),

τBn (xB) =
1

n
∏

j∈BC
(ŝjhB)

n∑

i=1

ωi

∏

j∈BC

K

(
xW,(j) −X(j)

i

ŝjhB

)
I(xBD

= XBD

i ),

µ̂Wn (xW ) =
1

n
∏

j∈WC
(ŝjhW )

n∑

i=1



ωi

∏

j∈WC

K

(
xW,(j) −X(j)

i

ŝjhW

)
I(xWD

= XWD

i )





2

,

µ̂Bn (xB) =
1

n
∏

j∈BC
(ŝjhB)

n∑

i=1



ωi

∏

j∈BC

K

(
xW,(j) −X(j)

i

ŝjhB

)
I(xBD

= XBD

i )





2

,

f̂W (xW ) =
1

n
∏

j∈WC
(ŝjhW )

n∑

i=1

∏

j∈WC

K

(
xW,(j) −X(j)

i

ŝjhW

)
I(xWD

= XWD

i ),

f̂B(xB) =
1

n
∏

j∈BC
(ŝjhB)

n∑

i=1

∏

j∈BC

K

(
xW,(j) −X(j)

i

ŝjhB

)
I(xBD

= XBD

i ),

where ŝj denotes the sampling variance of the jth covariate. In our numerical
studies, we use a fourth-order Epanechnikov kernel for K, i.e.

K(u) =
45

16

(
1− 28

3
u2
)
(1− 4u2).

It can be shown that
∫
uK(u)jdu = 0 for j = 1, 2, 3. Then we calculate

S̃W,B
n =

∑

xW,WD

∫

xW,WC

τWn (xW ){dWn (xW )− dBn (xW,B)}I(xW /∈ Ê)dxW,WC
.
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where xW,WC
and xW,WD

are the sub-vectors of xW formed by elements in
WC and WD.

When pWC
≤ 2, the integral in S̃W,B

n is computed via a midpoint rule
with a uniform grid. Specifically, for each j ∈ W , denoted by mj and Mj

the minimum and maximum value of x(j). We divide the interval [mj ,Mj ]
into L = 200 subintervals of equal width. Let zk,(j), k = 1, . . . , L, denote

the midpoints for these intervals, z(k̄) = (zk1,(1), . . . , zkWC
,pWC

)T for k̄ =

(k1, . . . , kWC
)T , and zW (k̄) and zB(k̄) the sub-vectors formed by elements in

WC and BC respectively. We approximate S̃W,B
n by

I∗
∑

xWD
,k̄

τWn (zW (k̄), xWD
){dWn (zW (k̄), xWD

)− dBn (zB(k̄), xWD,BD
)}I{(zW (k̄), xWD

) /∈ Ê},

where I∗ =
∏

j∈WC (Mj−mj)/L
pWC , and τWn (xW,WC

, xW,WD
) and τBn (xB,BC

, xB,BD
)

are shorthands for τWn (xW ) and τBn (xB), d
W
n (zW (k), xWD

) = I(τWn (zW (k), xWD
) ≥

0) and dBn (zB(k), xBD
) = I(τBn (zB(k), xBD

) ≥ 0).
If pWC

> 2, we approximate the integral using Monte Carlo methods.
Specifically, we generate N = 5000 random numbers Z(k), uniformly dis-
tributed in

∏
j [mj ,Mj ], and calculate

I ′
∑

xWD

N∑

k=1

τWn (ZW (k), xWD
){dWn (ZW (k), xWD

)− dBn (ZB(k), xWD,BD
)}

×I{(ZW (k), xWD
) /∈ Ê},

where I ′ =
∏

j∈WC (Mj − mj)/N , ZW (k) and ZB(k) are the sub-vectors of

Z(k) formed by elements in WC and BC .
When F̂ ̸= ∅, we calculated ân and σ̂2n by

ân =
1√

2π(hW )pW

∑

xW,WD

∫

xW,WC

√
µ̂Wn (xW )I(xW ∈ F̂ )dxW,WC

,

σ̂2n =
∑

xW,WD

∫
xW,WC

t∈[−1,1]
pWC

µ̂Wn (xW )I(xW ∈ F̂ )cov(max{
√
1− ρ2(t)Z1 + ρ(t)Z2, 0},

max{Z2, 0})dxW,WC
dt.

Definitions of Ê and F̂ are given in (5.1) and (5.2). When F̂ = ∅, we replace
F̂ by Ω in the integral. The above integrals are calculated similarly as for
S̃W,B
n . We reject the null when

√
nS̃W,B

n ≥ ân + σ̂nzα.
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6. Simulations. To evaluate the numerical performance of the pro-
posed testing procedure, we consider simulation studies based on the fol-
lowing model:

Y = h0(X
(1), X(2)) +Aτ0(X

(1), X(2)) + e,

where h0 denotes the baseline, τ0 denotes the contrast, and e ∼ N(0, 0.25)
is independent of A and X = (X(1), X(2))T . The objective is to test the
CQTE of variable X(2) conditional on X(1). Treatment A was generated
from a Bernoulli distribution with probability 0.5, independent of X. The
baseline function h0 was set to be

h0(x(1), x(2)) = 1−
x(1) − x(2)

2
.(6.1)

The contrast function takes the form

τ0(x(1), x(2)) = ϕ1(x(1))ϕ2(x(2)),(6.2)

for some continuous functions ϕ1 and ϕ2.
Variables X(1) and X(2) are independently generated. It follows from The-

orem 3.6 that the null (no CQTE) holds if and only if ϕ2(x(2)) ≥ 0, ∀x(2)
or ϕ2(x(2)) ≤ 0, ∀x(2). We consider five scenarios. In the first four scenarios,

X(1) and X(2) are generated from Unif[−2, 2], where Unif[a, b] stands for
the uniform distribution on the interval [a, b]. We set ϕ1(z) = z in the first
two scenarios and ϕ1(z) = max(z, 0) in the last two scenarios. As for ϕ2, in
Scenarios 1 and 3,

ϕ2(z) = z2 − δ,

for some δ ≥ 0. In Scenarios 2 and 4,

ϕ2(z) =





z, 0 ≤ z ≤ 2,
0, δ − 2 ≤ z < 0,

2 + z − δ, −2 ≤ z < δ − 2,

for some δ ≥ 0. In figure 1, we plot functions ϕ2 with different δ.
In the last scenario,X(1) is generated from Unif[−2, 2] whileX(2) is from a

uniform discrete distribution. Specifically, X(2) has the following probability
mass function

Pr(X(2) = a) =
1

2
, a = 0, 2.
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Fig 1: Plots of function ϕ2 for Scenario 1 and Scenario 2, from left to right, with
different choices of δ.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

delta=0

delta=0.5

delta=1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

delta=0

delta=1

delta=2

The contrast function is set to be

τ0(x(1), x(2)) = ϕ1(x(1))ϕ2(x(2)) = x(1)(x(2) − δ).

In all scenarios, the parameter δ controls the degree of CQTE. When
δ = 0, H0 holds; Otherwise, H1 holds. Moreover, it can be calculated that
the value differences

VD = E
[
τ0(X

(1), X(2))
{
dopt(X)− dopt{1}(X

(1))
}]

for Scenarios 1-5 are equal to δ3/2/3, δ2/8, δ3/2/6, δ2/16 and δ/3 for all
δ ≤ 1, respectively. In each scenario, we consider four settings by setting
VD = 0, 0.04, 0.08 and 0.12. Hence, the null holds in the first setting and
the alternative holds in other settings. We also consider two different sample
sizes, n = 300 and n = 600.

When implementing our testing procedure, we first fit a logistic regression
model for the propensity score and linear models for the conditional means of
Y given A and X. The test statistics are constructed as discussed in Section
5. Based on (6.1) and (6.2), the model for E(Y |X,A = 1) is always misspec-
ified, however, the propensity score model is correctly specified. Hence, our
test statistics are consistent. In Scenario 1-4, we set the smoothing param-
eters as hW = cWn

−1/7 and hB = cBn
−2/7 for some constants cW and cB.

Condition (A6) holds for such a choice of the bandwidth. In our implemen-
tation, we have tried a few values of cW and cB, and find cW = 2

√
3 and

cB = 6 working well for all scenarios. In Scenario 5, we set hW = 6n−2/7. In
(5.1) and (5.2), we set ηn = n−2/7, C1 = 3 and C2 = 1. Such a choice of ηn
satisfies Conditions (A8)-(A10) in our simulation settings. We conduct 600
simulations for each setting and report the proportions of rejecting the null
hypothesis of the proposed test statistics in Table 1.
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Table 1

Simulation results.

VD = 0 VD = 4% VD = 8% VD = 12%
α level α level α level α level

n 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

Scenario 1
300 4.3% 6.0% 24.0% 34.0% 58.7% 68.3% 82.2% 87.5%
600 1.5% 3.3% 36.7% 45.5% 75.8% 83.3% 95.7% 97.3%

Scenario 2
300 7.0% 11.1% 23.8% 32.7% 60.5% 69.3% 88.2% 92.5%
600 3.7% 7.8% 31.0% 41.8% 83.0% 90.5% 98.3% 99.5%

Scenario 3
300 3.8% 6.5% 37.5% 48.7% 76.5% 79.8% 93.5% 95.5%
600 2.7% 6.7% 52.5% 61.8% 99.1% 100% 99.8% 99.8%

Scenario 4
300 6.2% 10.2% 39.8% 47.7% 79.2% 87.3% 96.0% 97.8%
600 5.2% 8.8% 59.3% 68.2% 96.8% 98.3% 100.0% 100.0%

Scenario 5
300 5.2% 9.7% 29.3% 40.5% 68.0% 76.3% 94.0% 96.8%
600 5.3% 9.5% 46.2% 57.5% 92.2% 95.5% 100.0% 100.0%

Under H0 (i.e. the cases with VD = 0), the empirical type-I error rates
in Scenarios 2, 4 and 5 are close to the nominal level. In Scenarios 1 and
3, we have ν(F0) = 0. The empirical type I error rates in Scenarios 1 and
3 are well below the nominal level. This is in line with our theory which
suggests the type-I error rate should go to 0 in these settings. Under H1,
the power increases as the value difference or sample size increases, showing
the consistency of our test statistics.

7. Application with ACTG175 dataset. We apply our proposed
method to a data from AIDS Clinical Trials Group Protocol 175 (ACTG175)
study. This is a randomized trial where patients were randomly assigned to
the following four treatments, including zidovudine (ZDV) monotherapy,
ZDV + didanosine (ddI), ZDV + zalcitabine (zal) and ddI monotherapy.
We focus on patients receiving treatments: ZDV+ddI (denoted as 1) and
ZDV+zal (denoted as 0). Among them, there are 522 receiving treatment 1
and 524 receiving treatment 0. We choose the CD4 count (cells/mm3) at 20±
5 weeks after receiving the treatment as the response. The baseline covari-
ates include patient’s age and weight at baseline, the CD4 and CD8 counts
(coded as CD40 and CD80 respectively) at baseline, hemophilia (hemo, 0 =
no, 1 = yes), homosexual activity (homo, 0 = no, 1 = yes), history of intra-
venous drug use (drug, 0 = no, 1 = yes), race (0 = white, 1 = non-white),
gender (0 = female, 1 = male), antiretroviral history (str2, 0 = naive, 1 =
experienced), and symptomatic status (sympton, 0 = asymptomatic, 1 =
symptomatic). The first four variables are continuous while others are bi-
nary. Our objective is to select those variables that have qualitative treat-
ment effects in a sequential order. Since the propensity score is known, we
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consider the statistic T̃W,B proposed in Section 3. Our procedure proceeds
as follows:

1. Set D̂ = ∅. In the first step, for each variable i, define the set Wi = {i}
and calculate the p-value pi for each test statistic T̃Wi,D̂ as described
in Section 5. Stop if mini pi > α. Include the variable that gives the
smallest p-value in the set D̂, i.e,

D̂ ← {argmin
i
pi}.

2. In the second step, for each variable i /∈ D̂, define Wi = D̂ ∪ {i} and
calculate the p-value pi for each test statistic T̃Wi,D̂. Stop if mini pi >
α. Include the variable that gives the smallest p-value,

D̂ ← D̂ ∪ {argmin
i
pi}.

3. Continue the second step until it stops. Output D̂.

It is immediate to see that the above algorithm uses a forward selection
procedure. Backward or stepwise selection can be similarly considered. The
threshold α determines the significance level for each test statistic. In our
implementation, we set α = 1 − Pr(Z0 ≥ n1/6/2) ≈ 0.056 where Z0 is a
standard normal random variable. Such a choice of α meets the conditions
in Theorem 9.2 to achieve selection consistency of the forward selection
algorithm. As in simulations, we choose the bandwidth h = 6n−2/7 when
there’s only one continuous variable in the kernel estimation. Otherwise, we
set h = 2

√
3n−1/7. Sets Ê and F̂ are estimated by

Ê =

{
xW ∈ ΩW :

∣∣∣∣∣
τWn (xW )√
µ̂Wn (xW )

∣∣∣∣∣ ≤ C0ηn,

∣∣∣∣∣
τBn (xW,B)√
µ̂Bn (xW,B)

∣∣∣∣∣ ≤ C0ηn

}
,

F̂ =

{
xW ∈ ΩW :

∣∣∣∣∣
τWn (xW )√
µ̂Wn (xW )

∣∣∣∣∣ ≤ C0ηn,

∣∣∣∣∣
τBn (xW,B)√
µ̂Bn (xW,B)

∣∣∣∣∣ > C0ηn

}
,

where the constant C0 is set to be 0.03 in the implementation.
For the ACTG175 dataset, our algorithm stops after fourth iteration. At

the first iteration, only the variable age is significant and is thus selected. At
the second iteration, we find out that both hemo and homo have qualitative
effects conditional on age and variable hemo is chosen. At the third iteration,
only homo is significant given previously included variables. The algorithm
stops at the fourth iteration. We report all the p-values in each iteration in
Table 2.
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Table 2

P -values of each test statistic in all iterations.

age weight hemo homo drug race gender str2 sympton CD40 CD80

0.022 0.087 0.793 0.827 0.817 0.831 0.808 0.825 0.825 0.823 0.772
NA 0.986 1.2e-8 0.028 0.288 0.308 0.175 0.257 0.191 0.982 0.975
NA 0.996 NA 0.033 0.067 0.447 0.091 0.155 0.196 0.999 0.998
NA 0.999 NA NA 0.118 0.116 0.405 0.533 0.066 0.999 0.999

Our results indicate that variables age, hemo and homo have qualitative
treatment effects and are important for optimal treatment prescription. De-
noted by DFS the set of these three variables. We compare our algorithm
with the sequential advantage selection (SAS, Fan, Lu and Song, 2016).
SAS uses a forward selection procedure based on a sequential S-score and
selects the best candidate subset of variables via a BIC-type criterion. For
the ACTG175 dataset, SAS selects a total of 10 variables including age,
hemo and homo. Denoted by DSAS the set of these 10 variables.

To further examine the variable selection results, we evaluate the value
functions under the optimal treatment regimes based on the set of variables
selected by the proposed forward selection algorithm and SAS. For a given
set D ⊆ I = {1, 2, . . . , 11}, we estimate the optimal value function

V D = E{Y ∗(dDopt)}

via the online estimator proposed by Luedtke and van der Laan (2016). More
specifically, for i = ln+1, ln+2, . . . , n, we first compute the estimated optimal
treatment regime d̂D(i−1)(xD) = I{ĥD1,(i−1)(xD) > ĥD0,(i−1)(xD)} and the esti-

mated conditional mean functions Φ̂0,(i−1)(x) = xT θ̂0,(i−1) and Φ̂1,(i−1)(x) =

xT θ̂1,(i−1) based on data from patients 1 to i− 1.

For any j = 0, 1 and i = ln + 1, ln + 2, . . . , n, ĥDj,(i−1) is calculated via

kernel ridge regression, based on the dataset {(XD
k , Yk)}k≤i−1,Ak=j . We use

the Gaussian radial basis function kernel. The estimating procedure is im-
plemented by the R package CVST. The tuning parameters in the kernel
functions are selected via 5-folded cross-validation. Estimator θ̂j,(i−1) is com-
puted via a penalized regression with the SCAD penalty function (Fan and
Li, 2001), based on the dataset {(XD

k , Yk)}k≤i−1,Ak=j . The penalized re-
gression is implemented by the R package ncvreg, and the tuning parame-
ters are selected via 10-folded cross-validation. Let π0 = 0.5, we define for
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i = ln + 1, ln + 2, . . . , n, j = 1, . . . , n,

V̂ D
(i)(j) =

d̂D(i−1),Aj ,Xj

π0
Yj −

(
d̂D(i−1),Aj ,Xj

π0
− 1

)

×
(
Φ̂1,(i−1)(X

D
j )d̂D(i−1)(X

D
j ) + Φ̂0,(i−1)(X

D
j ){1− d̂D(i−1)(X

D
j )}

)
,

where d̂D(i−1),Aj ,Xj
= Aj d̂

D
(i−1)(X

D
j ) + (1−Aj){1− d̂D(i−1)(X

D
j )}.

The final estimator is given by

V̂ D =

∑n
i=ln+1{σ̂D(i)}−1V̂ D

(i)(i)∑n
i=ln+1{σ̂D(i)}−1

,

with the estimated standard error

σ̂D =

√
n− ln∑n

i=ln+1{σ̂D(i)}−1
,

where

{σ̂D(i)}2 = 1

i− 2

i∑

j=1

{V̂ D
(i−2)(j)}2 −


 1

i− 1

i−1∑

j=1

V̂ D
(i)(j)




2

.

Under certain conditions, we have

V̂ D − V D

σ̂D
d→ N(0, 1).

Set ln = 200. The estimated value functions V̂ DFS and V̂ DSAS are equal to
401.88 and 402.35 respectively, with estimated standard errors σ̂DFS = 7.50
and σ̂DSAS = 7.19. Since DFS ⊆ DSAS , we have V DSAS ≥ V DFS . However,
the difference V DSAS − V DFS is not significant. This implies the proposed
forward selection algorithm selects less variables than SAS, while achieves
approximately the same value function in optimal treatment decision.

8. Discussion. In this paper, we introduce the notion of conditional
qualitative treatment effects (CQTE) and present several equivalent defi-
nitions. We also propose a consistent testing procedure for the existence of
CQTE. Our test has correct size under the null hypothesis and non-negligible
power against some nonstandard local alternatives.
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8.1. More on the forward selection algorithm. The forward selection al-
gorithm introduced in Section 7 is a byproduct of the proposed testing pro-
cedure for the existence of CQTE. While it is worthwhile to investigate its
statistical properties, this is a very challenging task. In the literature, few
works have studied the asymptotic properties of a forward selection proce-
dure. Wang (2009) established the “sure screening property” of the classical
forward linear regression in a high dimensional setting. However, the proofs
of the major theorems in that paper (Theorem 1 and 2) rely heavily on the
specific structure of linear regression and it remains unknown whether the
“sure screening property” holds for general forward selection algorithms.

Our forward selection algorithm aims to identify a subset D0 ⊆ [1, . . . , p]
with minimum cardinality such that the optimal value function based on
variables in XD0 is the same as that based on X. In the supplementary
appendix, we establish the “sure screening property” (Theorem 9.1) and se-
lection consistency (Theorem 9.2) of the considered forward selection algo-
rithm based on the p-values of the CQTE tests. Moreover, we conduct some
simulation studies to examine the empirical performance of the proposed
algorithm and compare it with SAS (Fan, Lu and Song, 2016). Our forward
selection algorithm achieves better model selection results when compared
to SAS in all considered simulation scenarios. More details can be found in
Section 9 of the supplementary appendix.

8.2. Fully nonparametric implementation. The proposed test statistic in
Section 3 requires the propensity score function to be correctly specified.
In Section 4, we introduce a doubly robust test statistic and posit some
parametric models for the propensity score and conditional mean functions.
In the supplementary appendix, we consider a fully nonparametric procedure
based on some nonparametric estimators of the propensity score and the
conditional mean functions.

We further conduct some simulation studies to examine the empirical
performance of the nonparametric testing procedure and compare it with the
doubly robust test describe in Section 4. We briefly summarize the results
here: (i) The nonparametric test statistic is more powerful than the doubly
robust test statistic. (ii) When the sample size is small, the empirical type
I error rates of the nonparametric test statistic are slightly larger than the
nominal level in some cases. More details can be found in Section 11 of the
supplementary appendix.

Although it is interesting to investigate the theoretical properties of such
a nonparametric test statistic, it is beyond the scope of the current paper
and is omitted here.
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8.3. Extensions to Lp-type and supremum-type functionals. As commented
in Remark 2.5, the test statistic for no CQTE can be constructed based on

SW,B =

∫

xW∈ΩW

φ{τW0 (xW )}{dWopt(xW )− dBopt(xW,B)}ω0(xW )dxW .

In the current paper, we set φ(·) to be the identity function. More generally,
we can take φ(·) to be any monotonically increasing function with φ(0) = 0.
In Section 12 in the supplementary appendix, we consider the following class
of functions φ(z) = sgn(z)|z|q, and derive the corresponding test statistic
T̃W,B
n,q for any q ≥ 1.

We show in Theorem 12.1 that T̃W,B
n,q have asymptotically correct size

under H0 and provide its asymptotic power function in Theorem 12.2 under
Ha. For different q, the asymptotic power function increases as

∫

xW∈F0

2(q−3)/2qΓ(q/2)√
πσ̃q

{µW (xW )}(q−1)/2δW0 (xW )fW (xW )dxW

increases, where

σ̃2q =

∫
xW∈F0

t∈[−1,1]pW

µW (xW )cov(max{
√

1− ρ2(t)Z1 + ρ(t)Z2, 0}q,max{Z2, 0}q)dxWdt,

and Γ(z) =
∫∞
0 xz−1 exp(−x)dx.

Besides, when q > 1, the assumptions on ηn and the moments of Y condi-
tional on X and A are slightly different compared to those in (A3) and (A8).
More details can be found in Section 12 of the supplementary appendix.

In addition, in Section 13 of the supplementary article, we develop a
supremum-type test based on studentized kernel estimators of the contrast
function, with many different bandwidth values. We show that the test is
valid and has nontrivial power against

√
log n/

√
nhpmax-local alternatives,

where hmax denotes the maximum of the kernel bandwidth parameter.
Therefore, when compared to the supremum-type test, the Lp-type test

is more powerful since it allows for nontrivial testing against n−1/2-local
alternatives. However, the Lp-type test only uses one bandwidth value for
the kernel estimates. As a result, it might be sensitive to the choice of the
bandwidth parameter.

8.4. Other issues. For simplicity, we only consider a single decision stage
and focus on binary treatments. It will be useful in practice to extend CQTE
and its associated testing procedure to multi-stages with multiple treatment
options. Moreover, our test statistic relies on the kernel-based estimators of
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the contrast function. It is well known that the kernel-based estimations will
behave poorly when the dimension of the covariates is large. How to adapt
our test statistics to handle high-dimensional covariates remains challenging.

Our testing procedure requires the specification of the tuning parameters
hW , hB and ηn (see Section 5). In general, one can set hW = cWn

−κW ,
hB = cBn

−κB and ηn = n−κ0 for some cW , cB, κW , κB, κ0 > 0. In practice,
we recommend to set cW = 2

√
3, cB = 6, κW = 1/7, κB = 2/7 if pW ≥ 2,

pB = 1 and cW = cB = 2
√
3, κW = κB = 1/7 if pW , pB ≥ 2, and κ0 = 2/7.

We have tried various values of tuning parameters in our simulation studies
and find such a choice works well in all scenarios. In Section 10 of the
supplementary article, we examine the performance of our test under other
choices of tuning parameters. The simulation results are very similar to those
in Section 6.
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