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a b s t r a c t

An analytical model for predicting the shapes of rectangular bars with variable curvatures along their
lengths through a novel forming method, differential velocity sideways extrusion (DVSE), previously
proposed by the authors, has been developed on the basis of the upper bound method. A new flow line
function was presented to describe its deformation field. The plastic deformation zone (PDZ) was
assumed to be fan-shaped, where the trajectory of the material flow within the PDZ had an elliptic shape.
The proposed continuous flow line function was validated using finite element simulations. The flow
patterns, extrusion pressure, curvature, and effective strain predicted by the analytical solutions agreed
well with modelling results. Compared to the classical discontinuous simple shear model of channel
angular extrusion (CAE) with a 90� die, the new approach was shown to predict the effective strain more
closely.
© 2018 The Author. Publishing Services provided by Elsevier B.V. on behalf of KeAi. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The demand for using extruded aluminium profiles as structural
components on aircraft, trains and cars has been increasing
nowadays due to lightweight design, where a reduced consump-
tion of fuel and therefore a decreased emission of CO2 can be
achieved. In automobiles, aerospace, and shipbuilding industry,
curved profiles are largely used for the manufacturing of ultra-light
complex structures with high stiffness and strength due to aero-
dynamics, structural properties, and design reasons [1e4].

Curved profiles are mostly achieved by conventional bending
procedures such as stretch bending, press bending, rotary draw
bending and roll bending. However, most of them have disadvan-
tages such as cross-section deformations and springback of profiles
during the bending process which need to be avoided through
expensive tools [5e10], thus inevitably significantly increasing the
manufacturing costs. Some novel stress superposed cold bending
techniques, i.e. torque superposed spatial (TSS) bending and su-
perposed three-roll-bending with subsequent profile deflection,
have been proposed to improve the forming limitations [11e14]. It
hi).
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was found that cross-sectional deformations and springback of
curved profiles can be greatly reduced because of the superposition
of torsion or compression with the external bending moment.

Recently, several novel extrusion-bending integrated methods
have been developed. One is curved profile extrusion (CPE) pro-
posed by Kleiner and co-workers [15,16] to decrease the
manufacturing procedures of curved profiles. During CPE the metal
billets are directly formed into curved profiles within only one
extrusion procedure, thus significantly improving the
manufacturing efficiency. This method is based on the conventional
straight extrusion process, where a bending device is directly
installed behind the die exit orifice to deflect the extruded profile
so that it comes out of the die with the prescribed curvature. Muller
[17,18] used a segmented regulating guiding device which is
composed of serially placed bending discs at the die exit, to bend
the extruded profile. Another way of extruding curved profiles is by
exploiting an inclined die to adjust the material flow velocity dis-
tribution over the profile cross-section. Shiraishi and co-workers
[19e21] developed a novel extrusion-bending integrated forming
process for producing curved bars and tubes, in which a plasticine
billet is extruded through a die aperture inclined towards the
central axis of the container at a predetermined angle. It was found
that the curvature of the extruded bars and tubes can be varied by
adjusting the inclination angle of the die aperture, i.e., a greater
inclination angle results in a greater curvature.
lf of KeAi. This is an open access article under the CC BY-NC-ND license (http://
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Nomenclature

D1 Width of the billet (mm)
D2 Width of the extruded profile (mm)
dh;dl Height and length of the differential element of the

plastic deformation zone (PDZ) (mm)
dV Volume of the differential element of the PDZ (mm3)
h Height of the dead metal zone (DMZ) (mm)
k0;kf Initial and final shear yield stresses of the material

(MPa)

k Mean shear yield stress of the material (MPa)
l Die bearing length (mm)
l1, l2 Transient billet lengths with velocity v1; v2

respectively (mm)
m Constant friction factor
P1;P2 Extrusion pressures of the upper and lower punches

(MPa)
P1u;P2u Upper bound of extrusion pressures of the upper and

lower punches (MPa)
Rc Bending radius of the profile (mm)
S0 Cross-sectional area of the billet (mm2)
S3;S4 Cross-sectional areas of the related profile (mm2)
Sf ;Sv Areas of frictional and velocity discontinuity surfaces

(mm2)
Dv Amount of velocity discontinuity (mm/s)

v1; v2 Extrusion velocities of the upper and lower punches
(mm/s)

v1e; v2e Maximum and minimum material flow velocities
across the die exit orifice (mm/s)

v3; v4 Velocities at the volume (mass) centre of the related
profile (mm/s)

vp Velocity of particle p moving on the curve MN
(mm/s)

w Thickness of the billet and extruded profile (mm)
_Wdef Power dissipated in the plastic deformation zone

(N$mm/s)
_We; _Wi External and internal power supplies (N$mm/s)
_WSf ;

_WSv Power dissipated on the frictional and velocity
discontinuity surfaces (N$mm/s)

y3;y4 Coordinates of the volume (mass) centre of the
related profile (mm)

Greek symbols
q Angular position along the flow line (�)
ε Effective strain
_ε; _εm Effective strain rate, mean value of the effective strain

rate of the PDZ (s�1)
k Bending curvature of the extruded profile (mm�1)
l Extrusion ratio
x Eccentricity ratio
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The authors proposed a novel extrusion-bending process,
named differential velocity sideways extrusion (DVSE), and its
feasibility was studied [22,23]. The basic principle of this method is
bending profiles simultaneouslywhile extruding, which is achieved
by controlling the gradient of the internal material flow velocity at
the die exit orifice owing to the difference of relative moving ve-
locities of two extrusion punches. It has been experimentally
shown that by adjusting the extrusion velocity ratio of the two
opposed punches as well as the extrusion ratio, curved profiles
with adjustable curvatures can be obtained in one procedure. The
quantitative relationship between curvature of the extrudate and
the process parameters (the punch velocity ratio, extrusion ratio
etc.) need to be developed for guiding the tooling design and
forming process. Generally this can be achieved by theoretical
analysis and numerical simulation such as the finite element (FE)
modelling. The upper bound theorem has been extensively used to
predict the forming pressure and analyse the deformation charac-
teristics in the extrusion of profiles, ring rolling and forging pro-
cesses, and to determine and minimise the exit profile curvature in
the extrusion process of non-symmetrical profiles [24e28], etc. An
approximate analytical model for predicting the forming pressure
and curvature of the extrudate (round bar) has been developed by
the authors based on the upper bound method and the rigid block
model, where the plastic deformation zone (PDZ) was considered
as consisting of several single shear planes and the modes of
deformation were composed of rigid blocks of material separated
by the velocity discontinuity planes [29]. The simple shear model is
normally used in the upper bound analysis for approximation
especially when the geometry is complex, e.g., 3D round bars in Ref
[29]. In practice, material flow should be continuous without ve-
locity discontinuity. On the other hand, FE modelling has also been
widely used in the metal forming process since it can provide an
accurate visual description of the material flow. However, one
simulation case of the DVSE process requires huge computational
resources. It is not efficient to design the DVSE process by FE
modelling directly since numerous computations at different
process conditions are needed. Instead, analytical expression can be
achieved by upper bound theorem, which can be more easily
applied in the process design and optimisation.

Therefore, in this paper, an upper-bound model, based on a
more precise and realistic fan-shaped flow line model in which any
part of the material will face a gradual and continuous change in its
velocity rather than abrupt variations (velocity discontinuity)
throughout the deformation process, is proposed for estimating the
distribution of the dead metal zone (DMZ), extrusion pressure,
curvature and effective strain of the extruded profile during the
novel DVSE process. To focus on the flow field in the PDZ of the
DVSE process, the geometry factor in the previous work [29] is
simplified here by studying a rectangular bar, where the thick-
nesses of the die entrance and exit channels are the same in the
configuration of the DVSE process. A finite element model has been
developed in parallel with the analytical model to assess the ac-
curacy and validity of the model. The effects of extrusion velocity
ratio and extrusion ratio were investigated in detail. The new
approach is also compared to the classical discontinuous simple
shear model of channel angular extrusion (CAE) with a 90� die. The
findings provide a deeper understanding needed for wider appli-
cation of the DVSE forming technique.

2. Theoretical model

2.1. Upper bound model

The present analytical method is formulated on the basis of the
upper bound theorem for a rectangular material undergoing plane
strain extrusion, i.e. strain along thickness direction (normal to the
paper) is assumed to be zero. This happens when the thicknesses of
the die entrance and exit channels are the same in the configura-
tions of the DVSE process. Similar assumption has been made
previously by Kwan and co-workers [30], inwhich they argued that
the process of equal-cross-section lateral extrusion may be
assumed as a plane-strain problem, even if the cross-section is
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circular, rectangular or any other shape. As shown in Fig. 1a,
consider a T-shape die through which a plastic material is being
pushed oppositely by pressures P1 and P2. The corresponding ve-
locities of the two punches are v1 and v2, respectively. The initial
widths of the billet and the container are both D1, the final widths
of the extruded profile and the die exit channel are both D2. For a
rigid-plastic material and amongst all the kinematically admissible
velocity fields, the actual one minimises the power required for
material deformation:

_Wi ¼ 2
Z
V

k

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
_εij _εij

r
dV þ

Z
Sv

k Dv dSv þ
Z
Sf

mk Dv dSf �
Z
St

PividS

(1)

where k and k are the current and mean shear yield stresses of the
material, _εij is the strain rate tensor,m is the constant friction factor,
V is the volume of the plastic deformation zone (PDZ), Sv and Sf are
the areas of velocity discontinuity and frictional surfaces respec-
tively, St is the area where tension may occur, Dv is the amount of
velocity discontinuity on the frictional and discontinuity surfaces, vi
and Pi are the velocity and traction applied on St , respectively.

Upper bound analyses normally involve assuming several ve-
locity discontinuity surfaces, the material suddenly changes its
velocity when it passes through them [31]. However, in reality the
flow velocity does not experience abrupt variations after going
through an infinitesimal surface. Here, an upper bound analysis is
utilised where each point of the material will flow on a specific
elliptical streamline and undergo gradual and continuous change in
velocity. Fig. 1b shows the deformation model and a representative
streamlineM0MNN0 for the plane strain extrusion inwhich no strain
exists normal to the paper. The volume considered for analysis is
divided into five regions. Regions I ~ II are the PDZ in which the
material undergoes plastic deformation. Region V is the dead metal
zone (DMZ) whose central extension line BG divides the PDZ and
the die exit channel into two parts, namely AB of length xD2 and CB
of length ð1� xÞD2. Here the variable x ¼ gðv2=v1; lÞ represents the
effect of v2=v1 on the PDZ and DMZ for a given extrusion ratio l ¼
D1=D2. The material flowing into these two parts comes from the
corresponding two extrusion punches. The area of the DMZ and the
position of the line BG vary with v2=v1 and l. When v2=v1 ¼ 1, line
BG is exactly in the centre of the die exit channel. As v2=v1
Fig. 1. (a) Schematic of the differential velocity sideways extrusion (DVSE) process
decreases, it moves towards the side which has a lower extrusion
velocity (v2). The particle of the material on the inlet streamline
M0M will move along the curved line MN in region I where its ve-
locity vector will undergo gradual and continuous variations in
magnitude and orientation from v1

! (rightward) atM to v3
! (upward)

at N. The key of upper bound analysis for this configuration of the
DVSE process is to find such curves in region I (such asMN) tangent
to the inlet and outlet streamlines (such as M0M, NN0). The solution
is a quarter of an elliptical curve with its horizontal axial length 2b
being D1=ðxD2Þ ¼ l=x times the vertical axial length 2a. The
streamline in region II has similar characteristics and can be ob-
tained by respectively substituting x; v1 with 1� x; v2. It should be
noted that v3 ¼ D1v1=ðxD2Þ ¼ lv1=x and v4 ¼ lv2=ð1� xÞ (from
volume constancy) shown in Fig. 1b are the mean velocities at the
centres of volume (mass) of the profiles coming out of regions III
and IV, respectively, since there is no velocity discontinuity be-
tween regions III and IV, and the velocity for the material flowing
out of the die exit should present a gradient where the upper side
has the maximum velocity v1e, the lower side has the minimum
velocity v2e and the boundary FG has the continuous velocity vm.
The die exit channel of the DVSE is sufficiently short to ensure the
differential velocities are not compromised by the friction of the die
bearing land [23].

The velocity vector of a particle moving on the elliptical curve
MN is

vP
!¼ dEP

�!
dt

¼ dEO0�!
dt

þ dO0P
�!
dt

¼ dO0P
�!
dt

¼ d r!
dt

(2)

An elliptical curve having a horizontal axial length l=x times the
size of the vertical axial length is

x2

a2
þ y2

b2
¼ 1 (3)

where b ¼ ðl=xÞa ¼ m1a, x ¼ � r cos q, y ¼ r sin q, then

r ¼ m1affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �m2

1 � 1
�
cos2 q

q (4)

Let i
!
, j
!
, k
!

be the unit base vectors of the Cartesian co-
ordinates, then
[29], (b) the deformation model considered for analysis of the DVSE process.
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r!¼ r
�
� cos q i

!þ sin q j
!�
¼ m1affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �m2

1 � 1
�
cos2 q

q �
� cos q i

!þ sin q j
!�

(5)

Substituting Eq. (5) into Eq. (2), the velocity vector is expressed as

vP
!¼ am1

�
m2

1�1
�
sin q cos q�

1þ�m2
1�1

�
cos2 q

	3
2

dq
dt

�
�cos q i

!þ sin q j
!�

þ m1affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�m2

1�1
�
cos2 q

q dq
dt

�
sin q i

!þcos q j
!�þ0 k

!
(6)

Eq. (6) needs to satisfy the following boundary conditions:

at entrance : vP
!¼ v1 j

!
; q ¼ 00a

dq
dt

j
!¼ v1 j

!
(7)

at exit : vP
!¼ m1v1 i

!
; q ¼ p

2
0m1a

dq
dt

i
!¼ m1v1 i

!
(8)

It can be seen from Eqs. (7)e(8) that the velocity field satisfies
the geometry boundary conditions. For any streamline in the PDZ
the angular velocity is a constant, which is dq=dt ¼ v1=a. Then the
velocity field in the x�y�z reference system is

vP
!¼ � i

!
j
!

k
! 	24�L cos qþM sin q

L sin qþM cos q
0

3
5
x;y;z

(9)

where

L ¼ m1
�
m2

1 � 1
�
sin q cos q�

1þ �m2
1 � 1

�
cos2 q

	3
2

v1

M ¼ m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �m2

1 � 1
�
cos2 q

q v1 (10)

It is much more convenient to express the velocity field in cy-
lindrical coordinates. Let er

!, eq
! be the unit base vectors of the polar

coordinates and ez
! the height unit vector, according to the co-

ordinates system in Fig. 1b:

�
i
!

j
!

k
! 	 ¼ h er! eq

! ez
!i

T (11)

where T is the transformation matrix

T ¼
2
4 cosðp� qÞ sinðp� qÞ 0
�sinðp� qÞ cosðp� qÞ 0

0 0 �1

3
5 (12)

Substituting Eqs. (11) and (12) into Eq. (9), the velocity field in
the reqez reference system is

vP
!¼

h
er
! eq

! ez
!i

�
2
4 cosðp� qÞ sinðp� qÞ 0
�sinðp� qÞ cosðp� qÞ 0

0 0 �1

3
5
2
4�L cos qþM sin q

L sin qþM cos q
0

3
5
r;q;z

¼
h
er
! eq

! ez
!i24 vrvq

vz

3
5
r;q;z

(13)

The components of the velocity tensor would be
vr ¼ L ¼ m1
�
m2

1 � 1
�
sin q cos q� � � 	3 v1
1þ m2
1 � 1 cos2 q 2

vq ¼ �M ¼ �m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �m2

1 � 1
�
cos2 q

q v1

vz ¼ 0 (14)

The components of the strain rate tensor can be obtained as

_εrr ¼ vvr
vr

¼ 0

_εzz ¼ vvz
vz

¼ 0

_εqq ¼
vr
r
þ 1

r
vvq
vq

¼ v1
r

(
m1
�
m2

1 � 1
�
sin q cos q�

1þ �m2
1 � 1

�
cos2 q

	3
2

�m1
�
m2

1 � 1
�
sin q cos q�

1þ �m2
1 � 1

�
cos2 q

	3
2

)
¼ 0

_εrz ¼ 1
2



vvr
vz

þ vvz
vr

�
¼ 0

_εqz ¼
1
2



vvq
vz

þ 1
r
vvz
vq

�
¼ 0

_εrq ¼
1
2



1
r
vvr
vq

þ vvq
vr

� vq
r

�

¼ v1
2r

(
3m1

�
m2

1 � 1
�2

sin22q

4
�
1þ �m2

1 � 1
�
cos2 q

	5
2

þ m1
�
m2

1 � 1
�
cos 2 q�

1þ �m2
1 � 1

�
cos2 q

	3
2

þ m1�
1þ �m2

1 � 1
�
cos2 q

	1
2

)

(15)

For the strain rate tensor derived in Eq. (15) we get

_εrr þ _εqq þ _εzz ¼ 0 (16)

_εij _εij ¼ 2 _ε2rq (17)

Eq. (16) proves that the velocity field in Eq. (14) satisfies the
incompressibility condition (continuity equation), therefore it is a
kinematically admissible velocity field.

The first integral term in the right side of Eq. (1) would be

_Wdef ¼ 2
Z
v

k

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
_εij _εij

r
dV ¼ 2

Z
VPDZ

k _εrqw$dl$dh (18)

where dV is the differential volume element shown in Fig. 2, w is
the material thickness (normal to the paper), dl and dh are
respectively the length and the height of the differential element.
For a function written as

r!¼ xðqÞ i!þ yðqÞ j!þ zðqÞ k! (19)

the differential length element can be calculated as
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dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vxðqÞ
vq

�2

þ


vyðqÞ
vq

�2

þ


vzðqÞ
vq

�2
s

dq (20)

Substituting Eq. (5) into Eq. (20), the differential length element
in Fig. 2 is given by

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1a
2
��
m4

1 � 1
�
cos2 qþ 1

	
�
1þ �m2

1 � 1
�
cos2 q

	3
vuut dq (21)

Noting Eq. (4), Eq. (21) can also be expressed as

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m4

1 � 1
�
cos2 qþ 1

q
1þ �m2

1 � 1
�
cos2 q

rdq (22)

The differential height element dh shown in Fig. 2 is determined
as follows:

at exit : q ¼ p

2
; dh ¼ dy

sin 4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ



l

x
� x

l

�2
s

dy (23)

at entrance : q ¼ 0; dh ¼ dy
sin 4

EA
EF

¼ l

x
dy (24)

Here, a linear relation between the variation of dh with q is
assumed for simplicity, then

dh ¼ l

x

8><
>:1þ 2q

p

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

l2
þ
 
1� x2

l2

!2
vuut � 1

3
75
9>=
>;dy (25)

Thus the differential volume element dV is given by

dV ¼ w$dl$dh ¼ lwr
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m4

1 � 1
�
cos2 qþ 1

q
1þ �m2

1 � 1
�
cos2 q

�

8><
>:1þ 2q

p

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

l2
þ
 
1� x2

l2

!2
vuut � 1

3
75
9>=
>;dqdy

(26)

The second integral in the right side of Eq. (1) is the power
dissipated on the velocity discontinuity surfaces. As no velocity
discontinuity occurs when the material enters and leaves the PDZ,
Fig. 2. Illustration of the differential volume element dV.
the only velocity discontinuity surface is the PDZ and DMZ
boundary, and the power dissipated on it is

_WSv ¼
Z

SDMZ

k Dv dSDMZ ¼
Z

SDMZ

k Dv w$dlAF (27)

where dlAF is the differential length element on the elliptical curve
AF and can be obtained when Eq. (21) is applied on the curve with
vertical axial length 2a ¼ 2b=ðl=xÞ ¼ 2xD2=ðl=xÞ ¼ 2x2D2=l, where
x2D2=l is the height of DMZ (see Fig. 2), thus

dlAF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1

��
m4

1 � 1
�
cos2 qþ 1

	
�
1þ �m2

1 � 1
�
cos2 q

	3
vuut x2D2

l
dq (28)

The related velocity discontinuity variable is

Dv ¼ vPDZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r þ v2

q

q
(29)

The third term in the right side of Eq. (1) is the internal power
dissipated by the friction and can be broken into four parts (see
Fig. 3):

Part 1 e The power dissipated on friction between the material
in the region I and the die front and back walls:

_WSf1 ¼ 2
Z

SPDZ

mk Dv1 dSPDZ (30)

where dSPDZ is the same as the differential surface element used in
dV for the calculation of deformation power, and Dv1 is the same as
the one used in the previous part:

dSPDZ ¼ dh$dl ¼ lr
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m4

1 � 1
�
cos2 qþ 1

q
1þ �m2

1 � 1
�
cos2 q

�

8><
>:1þ 2q

p

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

l2
þ
 
1� x2

l2

!2
vuut � 1

3
75
9>=
>;dqdy

(31)

Dv1 ¼ vPDZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r þ v2

q

q
(32)

Part 2 e The power dissipated on friction between the material
in region III and the die front and back walls is
Fig. 3. Illustration of the internal power dissipated by the friction.
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_WSf2 ¼ 2
Z

mkf Dv2 dSf2 ¼ mkf v1D
2
1

 
1� x2

2

!
(33)
Sf2
l

where kf is the yield strength of the material after it has experi-
enced plastic deformation, Dv2 ¼ v3 ¼ lv1=x is the velocity discon-
tinuity variable, Sf2 is the related frictional surface given by

Sf2 ¼ 1
2
xD2

 
D1 �

x2D2

l

!
¼ x

2l
D2
1

 
1� x2

l2

!
(34)

Part 3 e The power dissipated on friction between the material
in the die exit channel and die walls:

_WSf3 ¼
Z
Sf3

mkf Dv3 dSf3 ¼ lmkf ð2xD2 þwÞ lv1
x

(35)

where Dv3 ¼ v3 ¼ lv1=x is the velocity discontinuity variable, Sf3 ¼
ð2xD2 þwÞl is the frictional surface of the exit channel, l is the exit
channel (die bearing land) length.

Part 4 e The power dissipated on friction between the material
in the die entrance channel (before entering region I) and die walls
is

_WSf4 ¼
Z
Sf4

mk0 Dv4 dSf4 ¼ 2mk0ðD1 þwÞl1v1 (36)

where k0 is the initial yield shear strength of the material, Dv4 ¼ v1
is the velocity discontinuity which is constant, Sf4 ¼ 2ðD1 þwÞl1 is
the frictional surface of the entrance channel with respect to v1, l1 is
the transient billet length with velocity v1 in the entrance channel.

In the DVSE process there is no external tension. So, in every
instance the last term in the right side of Eq. (1) is

R
St Pivi dS ¼ 0.

The internal power dismissed in the other side (regions II, IV etc.)
has similar characteristics and can be obtained by substituting x; v1;

l1 in the above _Wdef , _WSv, _WSf with 1� x; v2; l2, respectively. The
total internal power consumed for the process _Wi can be calculated
by summing all the components as

_Wi ¼ _Wdef þ _WSv þ _WSf (37)

For a given extrusion ratio l and extrusion velocity ratio v2=v1,
parameter D1=D2 is fixed at any extrusion time, material co-
efficients ðk; k0; kf Þ are also constants determined by the experi-
ment, the total power in equation above is a function of the
eccentricity ratio x. According to the upper-bound theorem, the
actual solution for x is obtained when _Wi given in Eq. (37) reaches a
minimum, i.e. differentiating the total power with respect to x and
set the derivative equal to zero:

v _Wi

vx
¼ 0 (38)

The external supplied energy rate is

_We ¼
Z
Sc

PividS ¼ ðP1v1 þ P2v2ÞD1w (39)

According to the upper bound theorem, the upper-bound so-
lution is equal to or higher than the actually required force in metal
forming process, i.e. the total power consumed for the process
should be supplied by the upper bound of the external force,
therefore we have
_Wi;min ¼ _Weu ¼ ðP1uv1 þ P2uv2ÞD1w (40)
stating that the external work done is equal to the internal energy
consumed. Here, _Weu, P1u and P2u are the upper bound solutions on
_We, P1 and P2, respectively. Minimising P1u and P2u with respect to
parameter x determines the best upper bound on the value of P1
and P2.
2.2. Determination of the extrudate curvature and effective strain

Fig. 4 illustrates the linear velocity distribution in the rectan-
gular exit die, which is divided into two parts, namely xD2 and ð1�
xÞD2. The extrudates flowing out of these two parts per unit time
can be regarded as two ‘‘prisms’’ determined by the axial velocity
vx, whose centres of volume (mass) are O3 and O4 with axial ma-
terial flow velocities v3 ¼ lv1=x; v4 ¼ lv2=ð1� xÞ, respectively. The
y-coordinates (local x�y�z reference system) of the centres of
volume (mass) of the axial velocity prisms can be given by

y3 ¼

Z
V

ydV3

V3
¼

Z
S3

yvxdS3

S3v3

y4 ¼

Z
V

ydV4

V4
¼

Z
S4

yvxdS4

S4v4
(41)

where V3;V4 are the related volumes and dS3; dS4 are surface ele-
ments. Using geometrical relations between parameters of Fig. 4,
the curvature radius and curvature of the exit profile have been
obtained using the following equations:

Rc ¼ y4v3 � y3v4
v3 � v4

(42)

k ¼ 1
Rc

(43)

The detailed derivation can be seen in Appendix A.
The effective strain is determined by multiplying the effective

strain rate by the deformation time. The effective strain rate is

_ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_εij _εij

r
¼ 2ffiffiffi

3
p _εrq (44)

where _εrq is given in Eq. (15) and is a function of q. Here a mean
value of the effective strain rate _εm is used to calculate the effective
strain, which is

_εm ¼

Z
VPDZ

_ε dV

Z
VPDZ

dV
¼

2
Z

VPDZ

_εrq dV

ffiffiffi
3

p Z
VPDZ

dV
(45)

where dV is the differential volume element given in Eq. (26). The
punch stroke needed for replacing the material from the PDZ with
the material in the entrance channel is obtained using the volume
constancy:

D1wl01 ¼
Z

VPDZ

dV (46)



Fig. 4. The linear velocity distribution in the rectangular die exit orifice and the bending curvature.
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where l01 is the punch stroke needed. The deformation time is equal
to the time taken for the punch to produce a stroke l01:

t ¼ l01
v1

(47)

Thus the effective strain can be obtained by multiplying Eq. (45)
by Eq. (47):

ε ¼ _εmt (48)
3. Experimental and finite element modelling details

The aluminium alloy AA1050 was used for tests, which was
annealed at 450 �C for 1 h. Uniaxial compression tests were first
conducted for a 50% reduction in height on specimens of 12 mm in
height and 8 mm in diameter at room temperature (23 �C), giving
an initial shear yield value of 20 MPa and a stressestrain relation as
s ¼ 145:5ε0:296, from which a final shear yield strength of 91 MPa
and a mean shear flow stress of 74 MPa were obtained. The ob-
tained true stressestrain data were also used in the material model
of the finite element analysis. Finite element modelling using
Deform-3D was conducted to better understand the extrusion
process, m ¼ 0.3 was adopted [23]. The dimension of the original
billet was D1 ¼ w ¼ 25:6 mm, the billet length was 130 mm. The
parameters varied during the modelling were the width D2 of the
die exit channel, extrusion velocity v2 of the lower punch. The ve-
locity of the upper punch was fixed at v1 ¼ 1 mm/s, and v2 of values
0, 0.333, 0.5, 0.667 and 1 mm/s were chosen, thus the velocity ratio
v2=v1 of values 0, 1/3, 1/2, 2/3, and 1 were applied. D2 of values 20
and 15 mm were studied, leading to a extrusion ratio D1=D2 of
values 1.28 and 1.71 respectively. The extrusion tooling was
assumed to be non-deformable and only the billet was deformable,
the thicknesses of the punch and the extrusion container wall were
simplified to be 1 mm, the bearing length was 2 mm as in practical
die [23]. The billet in the FE model was meshed with tetrahedral
elements. The absolute mesh density was used as the general
meshing method, where the minimum size of an element was set
as 0.5 mm and the size ratio was 2. A mesh window with an
increased element density was applied to the billet around the die
exit orifice to generate local finer elements. The element size in this
mesh window was set as 0.3 mm. These mesh sizes were
determined by refining them until reaching the convergence of the
calculated value to judge the validity. The initial temperatures of
the aluminium billet AA1050, the extrusion tooling and the
ambient air temperature were 23 �C (i.e., room temperature). The
process was modelled as an isothermal process, the temperature
rise of the billet was considered negligible because of the limited
extrusion time.

4. Results and discussion

4.1. Comparison of the flow patterns

The flow patterns of the billet (2 mm interval) are shown in
Fig. 5 from the current model. The finer flow patterns (1 mm in-
terval) of the deformation zone are also shown to reveal the dead
metal zone (DMZ). A dividing line passing through the vertex of the
DMZ is drawn in Fig. 5 to obtain the eccentricity ratio variable x and
height of the DMZ. The results are illustrated respectively in Fig. 6a
and b for comparison. The height of the DMZ from theoretical
analysis is x2D2=l, as shown in Fig. 2. It can be seen from Figs. 5 and
6 that there is a good agreement between the FE modelling and the
theoretical results, though some small differences exist when v2=v1
is close to 0. A clear DMZ is found on the edge of the billet opposite
to the side where the material flows out. The two boundary lines of
the DMZ come from the corresponding two extrusion punches,
respectively. The height of the DMZ decreases as the velocity ratio
v2=v1 and the extrusion ratio increase. The asymmetrical distortion
of the initial flow line interval after extrusion suggests that asym-
metrical material flow occurs near the die exit, due to the differ-
ential extrusion velocities of upper and lower punches.

4.2. Comparison of the extrusion pressure

Fig. 7a compares the extrusion pressure vs. stroke curves ob-
tained from the theoretical analysis and FE modelling, at velocity
ratio v2=v1 ¼ 0 and extrusion ratios l ¼ 1:28; 1:71, respectively. It
shows that there is a good agreement between the theoretical
model and FE modelling. It is worth noting that the extrusion
pressures predicted by the theoretical analysis are greater than
those obtained from the FEmodelling, especially at the initial stage.
The difference gradually decreases as the stroke proceeds, and the
maximum extrusion pressures at the stable stage of the FE



Fig. 5. Flow patterns at velocity ratios v2/v1 ¼ 0e1 and extrusion ratios l ¼ 1.28, 1.71, respectively.

Fig. 6. Comparison of (a) eccentricity ratio x, (b) height of the DMZ, at velocity ratios v2/v1 ¼ 0e1 and extrusion ratios l ¼ 1.28, 1.71, respectively.
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Fig. 7. Comparison of (a) extrusion pressure-stroke curves at velocity ratio v2/v1 ¼ 0, (b) extrusion pressure vs. velocity ratios curves, with extrusion ratios l ¼ 1.28, 1.71, respectively.
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modelling become quite close to the theoretical results. This devi-
ation is typical of the upper bound theory. The pressure gradually
decreases as the stroke proceeds further due to the decrease of
frictional surface areas in the entrance channel. Fig. 7b shows the
extrusion pressure vs. velocity ratio curves. The stroke used in the
theoretical analysis is determined from FE modelling where the
extrusion pressure P1 of the upper punch reaches peak value. The
extrusion pressure P2 for the lower punch at this extrusionmoment
was also extracted. It can be seen that a reasonable agreement is
achieved, though the theoretically predicted values are always
slightly higher. The upper punch has a greater extrusion pressure
than that of the lower punch when v2=v1 <1, implying that the
extrusion pressure P2 for the lower punch has not reached the
maximum value yet when P1 reaches peak value. The difference in
the two extrusion pressures gradually decreases as v2 approaches
v1, which becomes negligible when v2 ¼ v1.
Fig. 8. Simulated material flow velocity distribution across the die exit orifice, at
4.3. Comparison of the extrudate curvature

The material flow velocity over the die exit orifice is firstly ob-
tained from FE modelling, as shown in Fig. 8, which is then
compared with that calculated from theoretical analysis in Fig. 9a.
The extrudate curvature is compared in Fig. 9b. The values of the
curvatures from FE modelling are estimated by fitting the result
images with best-fit circles with the same scale. After getting the
radius Rc of the circle, the curvature is calculated as 1=Rc. Fig. 9a and
b show that there is a good agreement on the predicted velocity and
curvature, although the theoretically predicted curvature is slightly
greater than that of the FEmodelling especially when v2=v1 is small.
This may be due to the fact that the material flowing out of the die
exit orifice is assumed to be two independent parts controlled by
the two extrusion punches separately, but in reality the velocity of
these two parts are mutually constrained, the faster upper part may
velocity ratios v2/v1 ¼ 0e1 and extrusion ratios l ¼ 1.28, 1.71, respectively.



Fig. 9. Comparison of (a) material flow velocities across the die exit orifice, (b) extrudate curvature, at velocity ratios v2/v1 ¼ 0e1 and extrusion ratios l ¼ 1.28, 1.71, respectively.
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have a ‘‘pull’’ effect on the slower lower part, which in turn may
have a ‘‘drag’’ effect on the faster upper part. Another reason might
be that the effect of friction at the bearing land on the die exit
velocity and thus the profile curvature is not considered due to the
short bearing length (2 mm). However it could still have an ‘un-
bending’ or straightening effect on the extrudate, which needs
further investigation. All these factors make the predicted v1e
greater and v2e smaller than that of FE modelling, especially when
the velocity difference of the two extrusion punches is greater, i.e.
v2=v1 is smaller, as can be seen in Fig. 9a. The difference of the
predicted velocity between the theoretical analysis and FE model-
ling gradually decreases as the extrusion ratio l decreases and the
velocity ratio v2=v1 increases towards 1, which is in accordancewith
and explains the curvature difference shown in Fig. 9b. It can also
be seen from Fig. 9b that the curvature obtained from the FE
modelling is less sensitive to the extrusion ratio than that obtained
from the analytical model, which is in accordance with previous
work on curved round bars using the simple shear model and FE
modelling [29].
Fig. 10. Effective strain contours at velocity ratios v2/v1 ¼
4.4. Comparison of the effective strain

As discussed before the original extrusion die orifice can be
divided into two exit channels and the DVSE process can be
reasonably regarded as two equal or non-equal channel angular
extrusion (ECAE or NECAE) processes depending on the eccentricity
ratio x. For a NECAE die without rounding of the corners at the
intersection of the channels, the simple shear model which as-
sumes the material experiences an abrupt shearing gives the value
of shear strain in one pass as [31].

g ¼ cot a1 þ cot a2 (49)

where a1 and a2 are the angles of the intersection plane with the
entry and exit channels, respectively. For a 90� NECAE die, the value
of effective strain can be calculated from Eq. (49) as

ε ¼ g
. ffiffiffi

3
p

¼ ðDi=De þ De=DiÞ
. ffiffiffi

3
p

(50)
0e1 and extrusion ratios l ¼ 1.28, 1.71, respectively.



Fig. 11. Comparison of the effective strain of the extrudate: (a) l ¼ 1.28, (b) l ¼ 1.71.
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where Di and De are widths of the entry channel and the exit
channel, respectively. Here, Di ¼ D1 ¼ 25:6 mm is the same for all
velocity ratios and extrusion ratios. Only the effective strain of
outside bending part of the profile is calculated here, thusDe ¼ xD2,
where x is shown in Fig. 6a.

Fig. 10 shows the effective strain of the profile obtained from FE
modelling. It can be seen that severe plastic deformation (SPD)
occurs in the DVSE process, although certain inhomogeneous
deformation in local regions exists. The inside bending region of the
profile has the maximum localised deformation, which decreases
as the extrudate curvature decreases, namely as the extrusion ratio
decreases and the velocity ratio v2=v1 increases. Here, the mean
value of the effective strain over the cross-section of the outside
bending part of the profile at the die orifice is extracted from FE
modelling and shown in Fig. 11. The effective strain obtained from
the simple shear model and the proposed flow field model is also
given for comparison. Fig. 11 shows that the effective strain ob-
tained from the simple shear model is greater than those from the
proposed flow field model and the FE model, where the latter two
are very close. This implies that by distributing the plastic defor-
mation zone (PDZ) over a region instead of an abrupt and
concentrated shearing deformation on a single line, the predicted
effective strain will decrease, which is more close to the realistic
effective strain. This result is in accordance with other studies done
on ECAE [32], where the effective strain in one pass is obtained as a
function of the n exponent of the continuous flow line function and
increases with n, and the simple shear case ðn/∞Þ gives the upper
limit value 2=

ffiffiffi
3

p
¼ 1:15 of the effective strain.
5. Conclusions

A continuous fan-shaped flow line model is developed based on
the upper bound theorem to better analyse the deformation field of
a novel extrusion process, differential velocity sideways extrusion
(DVSE), previously proposed by the authors for forming curved
profiles. The predicted flow patterns, extrusion pressure, extrudate
curvature, and effective strain by the analytical model agree well
with the FE modelling results. It was concluded that the height of
the deadmetal zone (DMZ) decreases as the velocity ratio v2=v1 and
the extrusion ratio increase. A lower extrusion pressure is needed
for a punchwith a lower velocity, which increases with the increase
of its velocity. Bending curvatures of the extruded profiles can be
actively controlled in the DVSE process, which decrease as the
extrusion velocity ratio v2=v1 increases and the extrusion ratio
decreases. Severe plastic deformation (SPD) occurs in the DVSE
process in a way similar to the equal channel angular extrusion
(ECAE), but with a greater effective strain level than that per pass in
ECAE. The new fan-shaped flow line model predicts a smaller but
more realistic effective strain than the discontinuous shear
approach.
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Appendix A. Determination of the extrudate curvature

Fig. 4 shows the linear velocity distribution in a rectangular
zone. In this figure, D2 is the width of the extrudate and v3 and v4
are the axial velocities at coordinates y3 and y4, respectively. Rc is
the radius of the exit profile curvature. Assume after a finite time
element Dt, the extrudates at points O3;O4 move Dd3 and Dd4, due
toDd3 >Dd4 the exit profile will not come out straight andwill have
a bending angle Dqc; the following kinematic relations exist:

Dd3 ¼ v3Dt (A1)

Dd4 ¼ v4Dt (A2)

The related geometrical relations are

Dd3 ¼ DqcðRc � y3Þ (A3)

Dd4 ¼ DqcðRc � y4Þ (A4)

Substituting Eqs. (A3)e(A4) into Eqs. (A1)e(A2), the curvature
radius of the exit profile is given by

Rc ¼ y4v3 � y3v4
v3 � v4

(A5)

According to the law of conservation of mass:

vo ¼ D1

D2
ðv1 þ v2Þ ¼ lðv1 þ v2Þ (A6)

vx can be expressed as a function of y3 as

vx ¼ v3 � vo
y3

yþ vo (A7)

Substituting Eqs. (A6)e(A7) into Eq. (41), y3 is implicitly given
by
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Z
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(A8)

Thus y3 can be obtained by numerically solving the following
equation:

y23 þ g1ðxÞy3 � g2ðxÞ ¼ 0 (A9)

where y3 <0 should be the negative root, g1ðxÞ; g2ðxÞ are only
functions of x which are expressed as

g1ðxÞ ¼
voD2

2xv3

"
1
4
�


x� 1

2

�2
#

(A10)

g2ðxÞ ¼
ðv3 � voÞD2

2
3xv3

"
1
8
þ


x� 1

2

�3
#

(A11)

y4 can be obtained similarly. Then v2e and v1e can be given by
substituting y ¼ ±0:5D2 respectively into Eq. (A7).
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