35 research outputs found

    Microwave-enhanced pyrolysis of biomass coupled with catalytic reforming for hydrogen production

    Get PDF
    Pyrolysis of biomass is a promising and sustainable approach to produce value-added chemicals and biofuels. In order to achieve a high yield of hydrogen-rich syngas from pyrolysis of biomass, the microwave-enhanced pyrolysis of biomass coupled with catalytic reforming was studied systematically in this research. Firstly, microwave-enhanced pyrolysis of biomass was carried out and compared with conventional pyrolysis under the same processing conditions. Characterisations of biomass, pyrolytic char, bio-oil and biogas were conducted to investigate the differences between microwave-enhanced and conventional pyrolysis. It was found that certain types of carbon nano materials were formed on the surface of microwave pyrolytic chars. More biogas was produced via microwave heating, in which the highest H2 content reached 48.2vol.% during the course of microwave-enhanced pyrolysis of bamboo at 800°C. Most of the syngas contents produced from microwave-enhanced pyrolysis of biomass were above 80vol.% at 800°C. Generally, biomass could be converted into biofuel efficiently with microwave-enhanced process. Secondly, in order to increase hydrogen production, microwave-enhanced pyrolysis coupled with catalytic reforming (MPCCR) at 600°C was studied. In catalyst screening, Ni and Fe were applied as active compounds loaded onto different supports such as molecular sieves (13X), Al2O3 and natural minerals. In addition, activated carbon was employed as a reforming agent. It was found that Ni-13X catalyst resulted in a low yield of bio-oil and high yield of biogas around 75wt.%, which was the highest among all the catalysts investigated. It was also observed that activated carbon played a significant role in increasing biogas product and reducing bio-oil yield to less than 1wt.% in both conventional and microwave-enhanced pyrolysis coupled with reforming. MPCCR with Ni-13X and activated carbon enhanced cracking reactions of bio-oil, and subsequently lowed bio-oil yields and narrowed products distribution simultaneously. The maximum H2 content reached 55vol.% by MPCCR of bamboo using activated carbon as the reforming agent. Compared with conventional reforming, there was a sharp increase of H2 yield via microwave-enhanced reforming, resulting in a hydrogen-rich syngas with a high ratio of H2 to CO. Therefore, it is concluded that microwave irradiation enhances the reforming process. Finally, in this study, a novel method for catalyst-free synthesis of multi-walled carbon nanotubes (MWCNTs) from biomass was developed. MWCNTs with a diameter of 50 nm and a wall thickness around 5 nm have been successfully prepared via microwave-enhanced pyrolysis of gumwood at 500 °C. The mechanism for the growth of such carbon nanotubes (CNTs) was proposed as follows: volatiles were released from the biomass and left behind char particles; these char particles then acted as substrates, mineral matter in char particles (originating from biomass) acted as the catalyst, and the volatiles released act as the carbon source gas; the volatiles then underwent thermal and/or catalytic cracking on the surface of char to form amorphous carbon nanospheres; the carbon nanospheres subsequently self-assembled to form multi-walled CNTs under the effects of microwave irradiation. In summary, microwave-enhanced pyrolysis of biomass has the potential to produce high yield of hydrogen-rich syngas not only at high temperatures but also at low temperatures when it is coupled with catalytic reforming processes. It has also been demonstrated that microwave-enhanced pyrolysis of biomass could be used to produce MWCNTs at low temperatures. It can therefore be concluded that microwave-enhanced pyrolysis of biomass is an effective and efficient approach for the conversion of biomass into value-added products under mild conditions

    Biomass Gasification: An Overview of Technological Barriers and Socio-Environmental Impact

    Get PDF
    Biomass gasification has been regarded as a promising technology to utilize bioenergy sustainably. However, further exploitation of biomass gasification still needs to overcome a significant number of technological and logistic challenges. In this chapter, the current development status of biomass gasification, especially for the activities in China, has been presented. The biomass characters and the challenges associated with biomass collection and transportation are covered and it is believed that biomass gasification coupled with distributed power generation will be more competitive in some small communities with large amount of local biomass materials. The technical part of biomass gasification is detailed by introducing different types of gasifiers as well as investigating the minimization methods of tar, which have become more and more important. In fact, applying biomass gasification also needs to deal with other socio-environmental barriers, such as health concerns, environmental issues and public fears. However, an objective financial return can actually accelerate the commercialization of biomass gasification for power and heat generation, and in the meantime, it will also contribute to other technical breakthroughs

    Highly efficient steam reforming of ethanol (SRE) over CeO x grown on the nano Ni x Mg y O matrix: H 2 production under a high GHSV condition

    Get PDF
    Steam reforming of ethanol (SRE) over non-noble metal catalysts is normally conducted at high temperature (>600°C) to thermodynamically favour the catalytic process and carbon deposition mitigation. However, high temperature inhibits water-gas shift reaction (WGSR) and therefore restrains the yield of H2 and leads to the formation of an excessive amount of CO. The modification of non-noble metal catalyst to enhance WGSR is an attractive alternative. In this study, CeOx was firstly loaded onto a nano-scaled NixMgyO matrix and subsequently used as the catalyst for hydrogen production via SRE. Morphology of the catalyst materials was characterized by using a series of technologies, while H2-temperature programmed reduction (H2-TPR), CO-temperature programmed deposition (CO-TPD), and X-ray photoelectron spectroscopy (XPS), were employed to study the surface nickel, ceria clusters, and their interactions. The catalytic activity and durability of the catalyst were studied in the temperature region of 500°C to 800°C. The CeOx-coated nano NixMgyO matrix exhibited an outstanding hydrogen yield of 4.82 mol/molethanol under a high gas hourly space velocity (GHSV) of 200 000 hour−1. It is found that the unique Ni0-CeOx structure facilitates the adsorption of CO on the surface and therefore promotes the effective hydrogen production via WGSR. Moreover, this modified NixMgyO matrix was found to be a more robust and anticoking nanocatalyst because of reversible switch between Ce4+ and Ce3+. © 2019 John Wiley & Sons, Ltd

    Leveraging phone-level linguistic-acoustic similarity for utterance-level pronunciation scoring

    Full text link
    Recent studies on pronunciation scoring have explored the effect of introducing phone embeddings as reference pronunciation, but mostly in an implicit manner, i.e., addition or concatenation of reference phone embedding and actual pronunciation of the target phone as the phone-level pronunciation quality representation. In this paper, we propose to use linguistic-acoustic similarity to explicitly measure the deviation of non-native production from its native reference for pronunciation assessment. Specifically, the deviation is first estimated by the cosine similarity between reference phone embedding and corresponding acoustic embedding. Next, a phone-level Goodness of pronunciation (GOP) pre-training stage is introduced to guide this similarity-based learning for better initialization of the aforementioned two embeddings. Finally, a transformer-based hierarchical pronunciation scorer is used to map a sequence of phone embeddings, acoustic embeddings along with their similarity measures to predict the final utterance-level score. Experimental results on the non-native databases suggest that the proposed system significantly outperforms the baselines, where the acoustic and phone embeddings are simply added or concatenated. A further examination shows that the phone embeddings learned in the proposed approach are able to capture linguistic-acoustic attributes of native pronunciation as reference.Comment: Accepted by ICASSP 202

    Structured ZSM-5/SiC foam catalysts for bio-oils upgrading

    Get PDF
    ZSM-5 zeolite coating supported on SiC foams was prepared by a precursor dispersion-secondary growth method and the resulting structured ZSM-5/SiC foam catalyst was used for the proof-of-concept study of catalytic bio-oils upgrading (i.e. deoxygenation of the model compounds of methanol and anisole) in reference to ZSM-5 catalyst pellets. A layer of ZSM-5 coating with inter-crystal porosity on SiC foams was produced by curing the zeolite precursor thermally at 80 °C. The use of SiC foam as the zeolite support significantly improved transport phenomena compared to the packed-bed using ZSM-5 pellets, explaining the comparatively good catalytic performance achieved by the structured ZSM-5/SiC foam catalyst. In comparison with the ZSM-5 pellets, the ZSM-5/SiC foam catalyst showed 100.0% methanol conversion (at the weight hourly space velocity, WHSV, of 8 h–1) and 100.0% anisole conversion (at WHSV =5 h−1) at the initial stage of the processes, while only about 3% were obtained for the ZSM-5 pellets, under the same conditions. Based on the comparative analysis of the characterisation data on the fresh and spent catalysts, the deactivation mechanisms of the ZSM-5/SiC and the ZSM-5 pellet catalysts were explained. The process intensification using SiC foam to support ZSM-5 improved the global gas-to-solid mass transfer notably, and hence mitigating the pore blocking due to the carbon deposition on the external surface of supported ZSM-5

    An ASR-free Fluency Scoring Approach with Self-Supervised Learning

    Full text link
    A typical fluency scoring system generally relies on an automatic speech recognition (ASR) system to obtain time stamps in input speech for either the subsequent calculation of fluency-related features or directly modeling speech fluency with an end-to-end approach. This paper describes a novel ASR-free approach for automatic fluency assessment using self-supervised learning (SSL). Specifically, wav2vec2.0 is used to extract frame-level speech features, followed by K-means clustering to assign a pseudo label (cluster index) to each frame. A BLSTM-based model is trained to predict an utterance-level fluency score from frame-level SSL features and the corresponding cluster indexes. Neither speech transcription nor time stamp information is required in the proposed system. It is ASR-free and can potentially avoid the ASR errors effect in practice. Experimental results carried out on non-native English databases show that the proposed approach significantly improves the performance in the "open response" scenario as compared to previous methods and matches the recently reported performance in the "read aloud" scenario.Comment: Accepted by ICASSP 202

    Kinetic and thermodynamic investigations of CO2 gasification of coal chars prepared via conventional and microwave pyrolysis

    Get PDF
    This study examined an isothermal CO2 gasification of four chars prepared via two different methods, i.e., conventional and microwave-assisted pyrolysis, by the approach of thermogravimetric analysis. Physical, chemical, and structural behaviours of chars were examined using ultimate analysis, X-ray diffraction, and scanning electronic microscopy. Kinetic parameters were calculated by applying the shrinking unreacted core (SCM) and random pore (RPM) models. Moreover, char-CO2 gasification was further simulated by using Aspen Plus to investigate thermodynamic performances in terms of syngas composition and cold gas efficiency (CGE). The microwave-induced char has the largest C/H mass ratio and most ordered carbon structure, but the smallest gasification reactivity. Kinetic analysis indicates that the RPM is better for describing both gasification conversion and reaction rates of the studied chars, and the activation energies and pre-exponential factors varied in the range of 78.45–194.72 kJ/mol and 3.15–102,231.99 s−1, respectively. In addition, a compensation effect was noted during gasification. Finally, the microwave-derived char exhibits better thermodynamic performances than the conventional chars, with the highest CGE and CO molar concentration of 1.30% and 86.18%, respectively. Increasing the pyrolysis temperature, gasification temperature, and CO2-to-carbon molar ratio improved the CGE

    Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing

    Get PDF
    The influences of biomass constituents, such as lignocellulosic components and minerals, on the combustion of coal/biomass blends are of significant importance in co-firing due to its potential impacts on ignition, flame stability and burnout. In this research, combustion characteristics of pure lignocellulosic elements, Rosewood, Mengxi coal and their blends were studied in detail. The effect of minerals in Rosewood on combustion of biomass/Mengxi coal blends was investigated which revealed reductions in the ignition (≤20 °C), peak (≤12 °C)and burnout temperatures (≤6 °C). The results also demonstrate the existence of interactions between lignocellulosic constituents in the model biomass, which is dominated by the interactions of cellulose-derived products with xylan and lignin respectively which led to ∼8% reduction in char oxidation temperature. The minerals in biomass showed different impacts at different stages of the combustion process, such as inhibition effect during the devolatilization stage, and promotive synergy (mainly due to calcium)on ignition and char oxidation. © 2019 Elsevier Lt

    Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming

    Get PDF
    This study focuses on the use of a microwave reactor that combines biomass pyrolysis, at mild temperature, with catalytic reforming of the pyrolytic gas, using activated carbon, for generating hydrogen-rich synthesis gas. The traditional pyrolysis of biomass coupled with the reforming of its pyrolytic yields were also conducted using an electrically heated reactor. The bio-oil attained from conventional pyrolysis was higher in comparison to the yield from microwave pyrolysis. The reforming of the pyrolytic gas fraction led to reductions in bio-oil yield to <3.0 wt%, with a simultaneous increase in gaseous yields. An increase in the syngas and H2 selectivity was discovered with the reforming process such that the use of microwave pyrolysis with activated carbon reforming produced 85 vol% synthesis gas fraction containing 55 vol% H2 in comparison to the 74 vol% syngas fraction with 30 vol% H2 obtained without the reforming. Cracking reactions were improved with microwave heating, while deoxidation and dehydrogenation reactions were enhanced by activated carbon, which creates a reduction environment. Consequently, these reactions generated H2-rich syngas formation. The approach implemented in this study revealed higher H2, syngas yield and that the overall LHV of products has huge potential in the transformation of biomass into high-value synthesis gas

    Biomass constituents’ interactions with coal during co-firing

    Get PDF
    The importance of biomass in the emerging low carbon economy remains quite crucial especially relating to the co-firing of coal and biomass due to the improvements in thermal properties and its influence on reactivity, burnout and flame stability. In this research, the combustion profile of coal and biomass blends, coal and low temperature biomass ash blends and coal and demineralized biomass blends were studied using thermogravimetric analysis. The results established the presence of both mechanism of synergy in the fuel blends during co-firing. This was substantiated by significant decrease in peak, burnout temperature as well as reduction in activation energy, demonstrating non-additive interaction between the biomass and coal sample. Further deductions reveal a degree of overlap in the function of catalytic and non-catalytic synergy mechanisms in the biomass blends due to competitive reactions among the catalyzing AAEMs and the hydrogen contributing organic constituents of biomass with coal. Finally, this study further establishes a higher degree of catalytic synergy in potassium rich oat straw in comparison to calcium rich gumwood. © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of ICAE2018 - The 10th International Conference on Applied Energy
    corecore