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Abstract 

Steam reforming of ethanol (SRE) over non-noble metal catalysts is normally conducted at high 

temperature (> 600  ℃ ) to thermodynamically favour the catalytic process and carbon deposition 

mitigation. However, high temperature inhibits water-gas shift reaction (WGSR) and therefore restrains 

the yield of H2 and leads to the formation of an excessive amount of CO. The modification of non-noble 

metal catalyst to enhance WGSR is an attractive alternative. In this study, CeOx was firstly loaded onto a 

nano-scaled NixMgyO matrix and subsequently used as the catalyst for hydrogen production via SRE. 

Morphology of the catalyst materials was characterised by using a series of technologies, whilst H2-

temperature programmed reduction (H2-TPR), CO-temperature programmed deposition (CO-TPD) and X-

ray photoelectron spectroscopy (XPS), etc., were employed to study the surface nickel, ceria clusters and 

their interactions. The catalytic activity and durability of the catalyst were studied in the temperature 

region of 500 - 800 ℃. The CeOx-coated nano NixMgyO matrix exhibited an outstanding hydrogen yield of 

4.82 mol/molethanol under a high gas hourly space velocity (GHSV) of 200,000 h-1. It is found that the unique 

Ni0-CeOx structure facilitates the adsorption of CO on the surface and therefore promotes the effective 
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hydrogen production via WGSR. Moreover, this modified NixMgyO matrix is found to be a more robust 

and anti-coking nano-catalyst due to reversible switch between Ce4+ and Ce3+. 

Keywords: Steam reforming of ethanol; hydrogen production; NixMgyO matrix; CeO2; water-gas shift 

reaction 

 

1. INTRODUCTION 

The unique features of hydrogen, such as clean, inexhaustible, high conversion efficiency, make it a 

versatile energy carrier [1]. Currently, fossil fuels account for more than 90% of hydrogen production. The 

main processes for hydrogen production include natural gas reforming, coal and heavy oil gasification [2, 

3], which are associated with formation of a fair amount of CO and SOx as by-products. Along with the rise 

of fuel-cell hybrid electric vehicles [4, 5], higher purity hydrogen production from sustainable energy 

resources becomes particularly attractive in this regard [6]. 

Bio-ethanol has been increasingly used as a fuel and is considered as a promising alternative fuel for fuel 

cell due to its high H/C ratio and low cost of production [7]. It has the advantages of eliminating the risks 

and difficulties associated with the storage and transportation of hydrogen [8-10]. Therefore, hydrogen 

production from steam reforming of ethanol has been widely studied [8, 11, 12]. However, during the 

reforming of ethanol, apart from the desired water-gas shift reaction (WGSR), many other reactions may 

also occur, which are shown in Table 1. Operating conditions, and the composition and structure of the 

catalyst are also found to affect the reaction pathway and products distribution [11, 13]. 

To date, a suite of active metals (Pt, Rh, Pd, Ni, Cu, Zn, Fe) have been studied extensively as catalysts for 

SRE [14]. The results showed that Ni and Rh could enable the efficient hydrogen production. However, 

the large-scale application of Ni-based catalysts is still of challenges including carbon deposition and 

metallic sintering etc [15]. In our previous research [16], the nano-scaled MgO with a high specific surface 

area was synthesized as the supporting material of a novel NixMgyO matrix that exhibited a outstanding 

reforming activity and much better coke resistance ability when compared with the Ni/Al2O3 based 

catalysts and other commercialized catalysts. It is reported that the supporting material, MgO, can 
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facilitate CO2 adsorption to accelerate the rate of coke gasification [16, 17]. But it also leads to the 

formation of a high CO content in the gaseous product and relatively low hydrogen yield, which can be 

attributed to the inhibition of WGSR at high temperature. From a thermodynamic perspective, the desired 

operating temperature of SRE process is in the region of 600 - 900 ℃ [18]. One of the reasons is that 

carbon deposition could be mitigated at high temperatures [19]. However, moderate temperature (> 

600 ℃) will thermodynamically inhibit H2 formation via WGSR and lead to an excessive amount of CO in 

the product, which would hinder its further application in fuel cell [20, 21]. Therefore, low temperature 

SRE (< 400 ℃) is highly attractive and is usually achieved by using various noble metals such as Pt, Rh, Ru, 

Pd, etc. [11, 13, 22, 23]. However, high price and low accessibility of noble metals might limit their large-

scale use. 

Another approach to enhance WGSR is to modify the non-noble catalyst directly. In earlier studies, it was 

found that the strong metal-support interaction (SMSI) inside the Ni-Ce system enabled the stabilization 

of Ni particles and improve the reducibility of Ni2+ ions [24]. In fact, the spare electrons from Ce3+ could 

migrate to neighbouring Ni2+ ions and increase the reducibility of the subsurface Ni2+ ions [25]. This 

activation of nickel sites may improve hydrogen production via the acceleration of ions exchange between 

CO and H2O. On the other hand, CeO2 can accelerate water dissociation to form OH- groups, which are 

essential for the hydrogen production from CxH and CyOzH [26, 27]. 

To develop a robust catalyst for the in-situ hydrogen production in fuel cells, in this study, nano CeOx 

clusters were grown over the novel NixMgyO matrix to introduce new interactions between CeOx clusters 

and the restrained nickel ions inside the subsurface MgO matrix. The effect of this Ni0-CeOx over WGSR 

was investigated under moderate temperature (> 600 ℃). The overall catalytic performance in SRE was 

also studied under a high GHSV condition with a focus on hydrogen yield and anti-carbon formation ability. 

2. EXPERIMENTAL 

2.1 Preparation of catalysts 

All chemicals used in this research are of analytical (Sinopharm Chemical Reagent Co., Ltd., Shanghai, 

China). Two types of catalysts, i.e., NixMgyO, NixMgyO-Ce, were prepared following the procedures 
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described elsewhere [16]. Firstly, magnesium nitrate and polyethylene glycol (PEG, Mn = 20 000) were 

dissolved in deionized water. Then, the ammonia solution (5 wt%), as a sedimentation agent, was 

introduced into the solution dropwise with continuous stirring. The slurry therefore formed was then 

transferred into a Teflon-lined vessel for hydrothermal treatment by being kept at 100 ℃ for 24 h [28]. 

The treated slurry was subsequently filtered without washing, dried at 120 ℃ for 24 h, and calcinated at 

700 ℃ for 6 h. The calcined material was then impregnated with a nickel nitrate solution at 60 ℃, and the 

obtained precursor was dried and calcined following the same processes described previously. 

To prepare the Ce-modified catalysts, magnesium nitrate, PEG and cerium nitrate were initially dissolved 

in deionized water at a controlled molar ratio. The rest of the procedure was the same as for the 

preparation of the NixMgyO catalyst. 

In this study, the theoretical value of nickel loading was controlled at 10 wt% in mass, while the loading 

of Ce was 3 wt%, which was selected based on previous investigation on the effects of Ce loading as shown 

in Table S1. The denoted names and the actual compositions of individual catalysts are shown in Table 2.  

2.2 Characterization of catalysts 

N2 adsorption-desorption experiment was carried out to show the surface morphology of the catalysts. 

Following the Brunauer-Emmett-Teller (BET) method and Barett-Joyner-Halenda (BJH) procedure 

described elsewhere [29], the specific surface area, pore volume and micropore volume of both fresh and 

spent catalysts were characterised by using a Micrometrics ASAP-2020. The measurements were 

performed at -196 ℃, after the degas process at 300 ℃ for 5 h. 

Crystal structure of the catalysts was analysed by using an X-ray diffraction (XRD, Bruker D8 Advance) with 

a Cu X-ray tube (𝜆 = 1.5406 Å). The diffraction intensity was recorded at a range of 2𝜃 between 10° and 

90° with a step size of 0.01° and a counting time of 1 s. 

The reducibility of nickel species on the fresh catalysts was studied via H2-temperature programmed 

reduction (H2-TPR) (Finetec, Finesorb 3010D) following the process detailed elsewhere [16]. In each test, 

approximately 30 mg of the catalyst was pre-treated at 300 ℃ in argon (99.999%) and then heated from 
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room temperature to 1000 ℃ at a heating rate of 5 ℃/min under a specific atmosphere (10 vol% H2 in 

Argon).  

In order to investigate the CO adsorption onto the surface nickel, the CO-temperature programmed 

desorption (CO-TPD) was also carried out using the Finetec Finesorb 3010D. Approximately 70 mg of 

sample was reduced by H2 at 700 ℃ for 2 h. The inflow gas was then switched to pure argon (99.999%) to 

purge off the residual H2. Meanwhile, the bed temperature was decreased to 300 ℃ and kept isothermal 

for 1 h. The CO adsorption was conducted at room temperature for 30 min, followed by an argon-purging 

process until the signal of the thermal conductivity detector (TCD) became stable. The desorption process 

was carried out from room temperature to 750 ℃ at a heat rate of 5 ℃/min. 

The amount of carbon deposited on the used catalysts was quantified using thermogravimetric analysis 

(TGA, NETZSCH, model STA449F3). In each test, approximately 20 mg of the catalyst was kept at 105 ℃ 

for 20 min, and then heated to 1000 ℃ at a heating rate of 10 ℃/min. An accurate balance would record 

the weight variations of the sample accompanied by increasing of temperature. 

Raman spectrum was also applied to investigate disordered and graphitized carbon on the spent catalysts 

at room temperature by using a Renishaw inVia-reflex equipped with a 532 nm wavelength laser. Each 

sample was scanned from 800 to 3200 cm-1 for at least 3 times at different positions to minimize 

experimental errors. 

The oxidation states of elemental species on the surface of the catalysts were characterized by using X-

ray photoelectron spectroscopy (XPS, Shimadzu Axis Ultradld Spectroscope), which was operated under 

a vacuum condition of 10-9 Torr. A monochromatized Al Kα radiation source was used along with the 

spectrum calibration of C 1s spectrum at 248.8 eV. Both reduced and spent catalysts were analyzed to 

find out the transformation of oxidation state of the surface metals. 

The texture of the catalysts and the deposited carbon was observed using a transmission electron 

microscope (TEM, JEOL JEM-2100F). For the sample preparation, the catalyst powder was dispersed in 

ethanol with 3 min ultrasonic treatment (40 kHz) and then titrated onto 400 mesh copper grids. 
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2.3 Steam reforming experiment 

The schematic of experimental setup is shown in Fig. 1. During the course of testing, nitrogen (300 ml/min) 

was used as a carrier gas as well as a reference for the determination of the flow rates of product gases. 

Prior to each test, the catalyst was activated at 700 ℃ for 2 h under 25 vol% H2 in N2 at a flow rate of 400 

ml/min. The water and ethanol mixture was injected into the reaction system by using a syringe pump 

(Eldex Lab, Inc.) at a rate of 1 ml/min (the gaseous flow rate of ethanol and water were 134.7 ml/min and 

808.1 ml/min, respectively, GHSV = 200,000 h-1). The steam to carbon molar ratio of the liquid mixture 

was fixed at 3 (steam/ethanol molar ratio = 6). The liquid mixture was evaporated in a preheater (300 ℃) 

and mixed with nitrogen gas before being introduced to the reactor. The catalyst was loaded on the top 

of a perforated tray, which was placed in the middle of the reactor (310S stainless steel, I.D. = 12 mm). 

For each test, approximately 1.0 g of catalyst was diluted by 15.0 g of quartz sand (Aladdin, 2-3 mm φ), 

which was calcined prior to mixing to remove moisture and volatile contaminant. A thin layer of silica 

wool was placed underneath the catalyst bed to prevent the loss of the catalyst powder. A thermocouple 

was placed along the central axis of the reactor to monitor temperature of the catalyst bed. The outflow 

gas passed through a cold trap and was collected by using a 1 L Tedlar bag and was analysed off-line by 

using a Gas Chromatograph (SHIMADZU, GC-2014). For each catalyst, its catalytic activity was tested at 

four different temperature levels, i.e., 500, 600, 700 and 800 ℃. The composition of gas outflow was 

analysed 2 h after temperature of the catalyst bed had become stable. For the durability test, catalytic 

reforming was carried out at 700 ℃ and lasted for 30 h. All the tests were carried out under atmospheric 

pressure. 

2.4 Evaluation of catalytic performance 

The yield of hydrogen was defined based on the stoichiometry of the SRE reaction (R1): 

H2 yield (mol/molethanol) = 
𝑚𝑜𝑙𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 × 6
     (1) 
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The conversion of ethanol (Xethanol) was calculated only based on the production of CO2, CH4 and CO. Other 

products, such as ethylene, acetaldehyde and acetylene, were neglected due to their extremely low mole 

fractions in the gas product [30]. 

Xethanol (%) = 
𝑐𝑎𝑟𝑏𝑜𝑛 𝑚𝑜𝑙𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ×2
 ∙ 100%      (2) 

The yield of carbonaceous gases, such as CO2, CO and CH4, was calculated by: 

Carbonaceous gas yield (mol/molethanol) = 
mole of produced carbonaceous gas

𝑚𝑜𝑙𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 ×2
  (3) 

3. RESULTS AND DISCUSSION 

3.1 N2 adsorption-desorption analysis 

Structural features of the catalysts were characterised following the BET method, the results of which are 

illustrated in Table 3. It is clear that the fresh catalyst NixMgyO-Ce showed a very similar surface property 

to the NixMgyO catalyst, which indicates that the addition of Ce had no obvious influence on the 

morphology of the catalyst. This finding is also confirmed by their very similar shape of isotherms (Pseudo-

type II isotherm) and similar pore size distribution, as shown in Fig. 2 [16].  

3.2 XRD analysis 

Fig. 3 (A) shows the XRD patterns of the fresh catalysts that NiO and MgO exhibited the same structure as 

NaCl. Since no double structure peaks were observed at typical patterns of NiO or MgO, this means that 

the NixMgyO matrix is actually a rocksalt-structure solid solution due to the similar ionic radius and the 

same valence number of Ni2+ and Mg2+ ions [16, 31]. For the fresh NixMgyO-Ce, fluorite phase of CeO2 was 

observed with weak intensity, which indicates small CeO2 particulates dispersed over the catalyst surface 

[24, 32, 33]. The immiscibility of MgO and rare earth metal oxides resulted into a weak intensity of the 

rocksalt phase peak and increased the reducibility of surface nickel ions by altering nickel electronic 

property, which will affect the activity of metallic nickel clusters in SRE [24]. 
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3.3 Characteristics of Ni species 

The H2-TPR analysis was carried out to study the reducibility of surface metal ions and the interactions 

between nickel ions and the support, the results of which are shown in Fig. 4 (A). For the NixMgyO catalyst, 

the main peak (at 889 ℃) was attributed to the reduction of Ni2+ ions dissolved inside the MgO lattice to 

form NixMgyO solid solution [34]. The broad shoulder peak at 630 ℃  or above was confirmed as the 

reduction of Ni2+ ions at sublayers in previous work [16]. 

For the NixMgyO-Ce, it is obvious that the total reducibility of primary nickel specie (around 884 ℃) 

decreased after the doping with promoters, which suggests that surface isolated CeO2 could consume 

surface hydrogen gas and hinder hydrogen from penetrating into the matrix of solid solution for Ni2+ 

reduction [35]. The broad shoulder peak near 730 ℃ could also be explained as the reduction of Ni2+ at 

sublayers [24, 34], which was similar with the situation of the shoulder peak of the NixMgyO at 630 ℃. 

These broad shoulder peaks could also be attributed to the reduction of CeO2 particles dispersed on the 

surface [36, 37]. Moreover, there is a noticeable broad peak at the low temperature region of 300-550 ℃. 

The existence of this reduction peak could be explained by two reasons. The first reason is the direct 

reduction of surface CeO2 particles. At this temperature, CeO2 particles can be reduced from Ce4+ to Ce3+ 

by H2 [21, 36]. On the other hand, the reduced CeO2 particles could provide extra electrons that migrate 

to the neighbouring nickel sites or subsurface nickel merged inside MgO matrix and make Ni2+ ions much 

easier to be reduced [24, 25, 38]. The second reason is the reduction of the uncovered Ni2+ ions at the 

outermost layer with square pyramidal coordination or the reduction of NiO that has no interaction with 

the MgO surface [39, 40]. In order to further investigate the reason behind this, XRD experiment was 

conducted again to investigate the reduced catalysts, which were treated in a flow of 25 vol% H2 in N2 at 

700 ℃ for 2 h. 

As shown in Fig. 3 (B), no peaks for the reduced Ni0 were observed in the XRD pattern of the reduced 

NixMgyO. However, in the TPR pattern of the NixMgyO, low intensity humps in the temperature range of 

300-550 ℃ were observed and it could be only ascribed to the existence of a small amount of Ni2+ ions 

over the surface [16]. The reason for such could be that Ni0 particles were highly dispersed on the internal 
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surface of the support or the formation of small size Ni0 crystals (< 5 nm), which cannot be detected by 

XRD analysis [41, 42]. For the NixMgyO-Ce, it was different from the NixMgyO catalyst that Ni (220) peak 

was found near 76.1°. Combined with the XPS results (shown in Fig. S1), in which the reduction of CeO2 

was detected, it could be speculated that surface CeO2 is reduced under reducing atmosphere and form 

vacancies. These vacancies make the reduced CeOx particles more wettable to the neighbouring nickel 

sites and accelerate the formation of metallic nickel particles on the surface, and lead to a new Ni0-CeOx 

structure. 

3.4 CO-TPD analysis 

It is reported that the site for CO adsorption is Ni crystal but not the MgO support [43]. In this study, CO-

temperature programmed desorption was carried out to find out the interactions between Ni sites and 

CO molecules. In Fig. 4 (B), the desorption peaks observed over the NixMgyO solid solutions could be 

divided into three groups. The peaks at low temperatures (< 200 ℃) are ascribed to desorption of CO 

molecules with weak bonds from the smooth nickel crystal planes (𝛼 site) [38, 44]. The second peak group, 

located in a higher temperature region (200-350 ℃), could be attributed to more strongly bonded CO 

molecules [38]. The broader peaks, desorbed at temperatures above 400 ℃, are associated with the CO 

dissociative adsorption over the stepped nickel surface (𝛽 site) [43]. Moreover, the board peaks above 

400 ℃ could also be attributed to the formation of CO2 due to oxidation of the adsorbed CO by the 

subsurface metal oxides or the product from WGSR of CO and surface hydroxyl groups [43, 45, 46]. 

Compared two catalysts, the amount of CO desorbed at low temperatures (< 400  ℃ ) did not vary 

significantly because of their similar surface nickel content. However, the NixMgyO-Ce showed much 

higher intensity peak above 400 ℃, it confirmed the addition of CeO2 facilitates the adsorption of CO at 

higher temperature. Moreover, higher capability of CO adsorption promotes the WGSR and results in a 

higher H2 production. 
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3.5 Catalytic performance in SRE 

3.5.1 Hydrogen yield and ethanol conversion 

Hydrogen yield is a vital parameter for the evaluation of catalytic performance in steam reforming. In 

theory, 1 mole of ethanol can produce 6 moles of H2. However, some hydrogen molecules might 

participate in methanation reaction (the reverse of R12), and WGSR (R9) might be inhibited at a certain 

extend due to high temperature condition. As shown in Fig. 5 (A), the NixMgyO catalyst showed relatively 

low selectivity in hydrogen yield. At lower temperatures, for instance, 500 ℃, the NixMgyO catalyst only 

resulted in a H2 yield of 0.75 mol/molethanol, while the NixMgyO-Ce catalyst had considerably higher H2 yields 

of 2.47 mol/molethanol. At higher temperatures, such as 600, 700 and 800 ℃, the initial H2 yields of the 

modified catalyst were all above 4.70 mol/molethanol, while the highest yield for the NixMgyO catalyst was 

only 3.34 mol/molethanol at 800 ℃. Thus, the actual experiment result verified the promoting effects of 

nanoceria addition. 

For the conversion of ethanol, it is clear (as shown in Fig. 5 (B)) that the NixMgyO catalyst showed a much 

lower ethanol conversion of 21.5% at 500 ℃ if compare to NixMgyO-Ce, which had a more then double 

conversion of 49.8%. This result is consistent with their hydrogen yield. On the contrary, the ethanol 

conversion of the NixMgyO catalyst at temperatures above 600 ℃ was on a similar level as the modified 

catalyst. The possible reason for such could be that the temperature above 600 ℃ is high enough to 

thermodynamically favour the decomposition of ethanol [11]. 

3.5.2 Durability test 

The long-term tests were carried out at 700 ℃ for 30 h and the results are shown in Fig. 6. Normally, the 

catalytic activity of steam reforming catalyst decreases as a result of metal sintering (causing decreasing 

of active surface area) and carbon deposition (causing encapsulation of active metal particles) coupling 

with the blockage of surface defects [47, 48]. In this study, hydrogen yield and ethanol conversions of 

both catalysts increased at the initial stage of the reaction, and they showed even higher hydrogen yield 

rates at the final stage of the long-term tests. The reason for this observation could be the slow reduction 

of the active metal oxide (NiO) from the support matrix. At the early stage of the SRE, most of the nickel 
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ions were still in their oxidized state (Ni2+) and dispersed inside sublayers of the NixMgyO matrix, which 

were not reduced to Ni0 during the hydrogen reduction process. However, these Ni2+ ions were slowly 

reduced during the reforming process due to the higher H2 concentration in gas phase. Therefore, more 

newly reduced Ni0 sites formed when the SRE process proceeded, which resulted in the formation of more 

active sites and subsequently led to higher H2 yields. This deduction was also confirmed by the comparison 

of XRD patterns of the reduced catalysts and the spent catalysts after long-term SRE tests as shown in Fig. 

3 (B) and (C). It was found that the XRD spectrums of the reduced catalysts showed no Ni0 diffraction 

peaks but appeared in the spent catalysts. 

In general, both catalysts did not show notable deactivation during the long-term tests and the 

distribution of products did not vary significantly. The NixMgyO-Ce catalyst showed a high efficiency in 

hydrogen production with a yield of 4.82 mol/molethanol, which was achieved an extremely high GHSV 

(200,000 h-1) applied in this study. In Table 4, the NixMgyO-Ce catalyst is also compared with many other 

nickel-based catalysts from recent literatures [49-54]. It is noteworthy that the Ni/Y2O3 catalyst was the 

only catalyst, which showed higher hydrogen yield at 5.25 mol/molethanol, while its space velocity was only 

one-twentieth of what was applied to NixMgyO-Ce in this study. 

3.5.3 Evolution of gas yields 

From Fig. 6, it can be observed that the NixMgyO had higher ethanol conversion but lower hydrogen 

production. The reason behind this was further investigated by comparing the carbonaceous gases yields. 

For the modified catalyst, the NixMgyO-Ce had different tendency in the yield of gas products. It showed 

lower methane yield, which suggested the pathways for the formation of methane were suppressed. 

These pathways included methanation reaction (the reverse of R10), direct decomposition of 

acetaldehyde (R6) and surface carbon hydrogenation (the reverse of R12). It can also be deduced that 

steam reforming of acetaldehyde (R5) was more favoured to produce H2. On the other hand, the surface 

carbon and CO were also favoured to be oxidized by the surface oxygen from CeO2 instead of the 

hydrogenation to produce methane [55]. Therefore, these reaction pathways restricted the formation of 

methane and indirectly contributed to a higher hydrogen yield. Apart from the difference in methane 
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yield, the NixMgyO-Ce catalyst also had higher CO2 yield and lower CO yield, which indicated that WGSR 

was enhanced to produce more hydrogen. The results of CO-TPD test in this study also proved that the 

addition of Ce enhanced the adsorption of CO over surface nickel to promote the WGSR. From the point 

view of the WGSR mechanism, the adsorbed CO on the surface nickel sites can be easily oxidised to CO2 

by the vicinal CeOx particles. Then the reduced CeOx captures oxygen from the dissociation of water to 

production H2. In other words, ceria helps the generation of OH- groups via the decomposition of water 

molecule. The OH- groups can also promote the formation of H2 and CO2 from CxH and CyOxH species [26]. 

Therefore, the Ni0-CeOx system facilitates hydrogen production via the promotion of CO adsorption and 

the dissociation of water. 

3.6 Characterization of carbon deposits 

In general, carbon deposits can physically cover the catalyst surface and results in the loss of activity. Thus, 

carbon deposition, as a major catalyst deactivation factor, was investigated in this study. Firstly, the 

amount of carbon deposits on the spent catalysts was measured by using a TGA. In Fig. 7 (A), the weight 

loss of the NixMgyO reached ca. 24 wt%, while the NixMgyO-Ce exhibited much better performance with 

less than 1 wt% of weight loss. In addition, raman spectrum illustrated in Fig. 7 (B) shows that the spent 

NixMgyO exhibited much stronger integrated intensity of both D band (disordered carbon) and G band 

(graphite structure) if compared with the spent NixMgyO-Ce [56, 57]. In brief, both previous results 

indicate a dramatic promotion of catalyst capability in anti-carbon formation. 

In order to figure out the mechanism behind this promotion, the XPS technique was applied to elucidate 

the nature of carbon species on catalysts surface at the C 1s region (in Fig. 7 and Table S3). In the patterns, 

the main peak and the other two attached shoulders can be classified as follows: 285.0 ± 0.2 eV for 

graphite structure [24]; 285.8  ± 0.2 eV for “defects” or crystalline imperfections associated with 

disordered carbonaceous materials [58, 59]; 288-291 eV for CO3
2- species on MgO surface [60]. It was 

observed that the graphite peak intensity of the spent NixMgyO was very high but its “defects” peak was 

relatively low (Fig. 7 (C)), while the spent NixMgyO-Ce had a very low intensity of the graphite peak but 

higher intensity of the “defects” peak (Fig. 7 (D)). It should be emphasized that graphitic carbon is less 
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reactive and more difficulty for gasification. On the other hand, these types of carbon films can 

encapsulate active metal and cause catalytic activity loss. According to the mechanism of carbon growth, 

the graphitic forms is transformed from the surface accumulated carbon precursors at high temperature 

(> 600 ℃) [47]. Thus, it can be speculated that the NixMgyO-Ce catalyst increased the gasification rate of 

carbon precursors lead to much less formation of ordered graphitic carbon. In fact, surface CeOx has a 

property of reversible shift of oxidation state (Ce4+ ⇌ Ce3+). The surface cerium oxide can act as a source 

of oxygen supply as well as sink for oxygen capture [61]. Thus, the grown CeOx can provide highly mobile 

oxygen atoms for deposited carbon removal. 

3.7 Characterization of the spent catalysts 

The spent catalysts in this research were also investigated with other characterization methods. The N2 

adsorption-desorption analysis was employed again to test the spent catalysts after 30 h reaction, as 

shown in Table 3. Normally, the specific surface area and pore volume of the spent catalysts will decrease 

compared with those of their fresh state. This could be associated with pores blockage by carbon 

deposition and surface metal restructure after reforming test. However, the surface area and pore volume 

of the spent NixMgyO catalyst increased, instead. Based on the results of carbon deposits analyses, it was 

believed that this extraordinary increment was mainly due to the formation of a considerable amount of 

porous carbon over the catalyst surface. In TEM micrograph Fig. 8 (A) and (B), the filamentous carbons 

over the surface of the spent NixMgyO were confirmed, while the TEM observation of the spent catalyst 

NixMgyO-Ce did not find any graphited structure. 

The sintering of surface nickel particles was determined by manual measurement from TEM images. In 

Fig. 8 (C) and (D), both reduced NixMgyO and NixMgyO-Ce catalysts showed very similar particle size 

distribution with average size of 7.2 and 7.1 nm, respectively. While, compared both spent catalysts in Fig. 

8 (E) and (F) after reaction at 700 ℃ for 30 h, the spent NixMgyO-Ce showed relatively higher ratio of 

particles located in both size ranges between 5 to <10 nm and 10 to <15 nm, as well as its average particle 

size 14.7 nm is also smaller than that of the spent NixMgyO at 17.4 nm. Therefore, the deceleration of Ni 

particle growth over the NixMgyO-Ce could also contribute to its durability. 
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The XRD spectrum of the spent catalyst, in Fig. 3 (C), showed a unique diffraction peak located at 26.6° 

was observed on the spent NixMgyO. It indicates existence of significant amount of highly ordered carbon  

[62], which is in agreement with the findings of previous carbon deposits study. In addition, shoulder peak 

of metallic Ni on both spent catalysts positioned at 2𝜃 near 44.1° [17]. This indicates the Ni2+ ions in the 

sub-surface layers of the NixMgyO matrix was reduced after 30 h reaction [34]. However, the difference is 

more metallic nickel peaks were also found at 51.3° and 76.1° for the spent NixMgyO-Ce. Contrasted the 

previous H2-TPR result, we believe that the surface covered CeOx nanoparticles hindered hydrogen 

permeating into the matrix of solid solution and brought down the total reducibility of NixMgyO-Ce. But 

this surface CeOx also alter the neighbouring nickel electronic property and improved their reducibility. 

This explained why more metallic nickel peaks were detected by the XRD. Coincidentally, more surface 

Ni0 sites were also confirmed by XPS. 

The surface Ni oxidation states were investigated by using XPS. Both the reduced and spent catalysts were 

analysed to compare their initial and final states. The Ni 2p spectra and deconvolution details are 

illustrated in Fig. 9, Table S2 and S3. The binding energies of Ni0, Ni2+ and Ni3+ in NixMgyO solid solution are 

ca. 853.0 eV, 854.8 eV and 856.7 eV [24]. For the reduced catalysts, no Ni0 was observed for all the three 

catalysts. This is also similar to the XRD analysis results of the freshly reduced catalysts. The reduction for 

2 h at 700 ℃ still could not overcome the bonding forces of Ni-O-MgO sites. For the spent catalysts, 

NixMgyO exhibited a substantial attenuation on the intensity of the Ni 2p, compared with NixMgyO-Ce. The 

reason could be that the surface of the NixMgyO catalyst had severe deposited carbon, which formed a 

carbon layer and covered the surface Ni ions. Ni0 was observed on both the spent NixMgyO and the spent 

NixMgyO-Ce, which was consistent with the results of XRD analysis. However, in Table S3, the different Ni0 

and Ni2+ surface atomic compositions of both spent catalysts also demonstrated that the chemical 

environment of surface Ni changed due to the surface grown CeOx. For the spent NixMgyO-Ce, 12.4 wt% 

of Ni0 was on the catalyst surface, while this figure was 19.1 wt% for the spent NixMgyO. This finding was 

also in agreement with the H2-TPR result that surface CeOx would partially cover nickel ions. However, if 

took the total number of Ni sites into account, the spent NixMgyO-Ce (5.38 wt% total Ni on the surface) 

had more Ni0 sites than that of the spent NixMgyO (2.85 wt% total Ni on the surface). This means more 
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nickel ions had been reduced and formed Ni0-CeOx over the NixMgyO-Ce. The presence of Ce3+ was also 

confirmed by the Ce 3d spectra as shown in Fig. S1 [63]. 

4. CONCLUSIONS 

In this research, it was found that the addition of CeOx improved the performance of NixMgyO matrix in 

SRE, which is indicated by the enhanced hydrogen yield, the mitigation of carbon deposition and the 

extension of catalyst durability. It is found that the promotion of WGSR and the inhibition of methanation 

played as dominant role in promoting hydrogen yield. In the long-term test at a high GHSV at 200,000 h-

1, the NixMgyO-Ce catalyst showed an outstanding stable high hydrogen yield of 4.82 mol/molethanol, which 

is promising to be used commercially for hydrogen production from SRE. 
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Tables 

Table 1 Primary and side reactions of steam reforming of ethanol. 

No. Reaction name Reaction equation 

R1 Steam reforming of ethanol C2H5OH + 3H2O → 2CO2 + 6H2 

R2 Decomposition of ethanol C2H5OH → CH4 + CO + H2 

R3 Ethanol dehydrogenation to acetaldehyde C2H5OH → C2H4O + H2 

R4 Ethanol dehydration to ethylene C2H5OH → C2H4 + H2O 

R5 Steam reforming of acetaldehyde C2H4O + 3H2O → 2CO2 + 5H2 

R6 Decomposition of acetaldehyde C2H4O → CO + CH4 

R7 Steam reforming of ethylene C2H4 + 4H2O → 2CO2 + 6H2 

R8 Decomposition of ethylene C2H4 → C +CH4 

R9 Water-gas shift reaction CO + H2O ⇌ CO2 + H2 

R10 Steam reforming of methane CH4 + H2O ⇌ CO + 3H2 

R11 CO disproportionation reaction 2CO ⇌ CO2 + C (coke) 

R12 Decomposition of methane CH4 ⇌ 2H2 + C (coke) 

R13 Carbon gasification by steam C + H2O ⇌ CO + H2 
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Table 2 Elemental analysis results of fresh catalysts. 

Catalyst name 

Theoretical element mass composition Measured element mass compositiona 

Ni 
Promoter 

element (Ce) 
Ni 

Promoter 

element (Ce) 

NixMgyO 10% N/A 8.4% N/A 

NixMgyO-Ce 10% 3% 8.3% 2.3% 

a Measured by using ICP-AES. 
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Table 3 Structural characteristics of both fresh and spent catalysts. 

catalysts 
Surface area 

(m2/g) 

Pore volume 

(cm3/g) 

Micropore 

volume (cm3/g) 
Pore size (nm) 

Fresh NixMgyO 56 0.28 0.0059 20 

Used NixMgyO 138 0.47 0.0090 14 

Fresh NixMgyO-Ce 52 0.29 0.0045 22 

Used NixMgyO-Ce 37 0.12 0.0024 13 
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Table 4 Comparison of catalytic performance of different catalysts. 

Catalyst T (℃) S/C GHSV (h-1) YH2 (mol/molethanol) 

Pt/CeO2 (rod) [49] 550 5.0 30,000 4.52 

Ni/MgAl2O4 [50] 625 3.0 2,700 3.87 

LaNi1-xCoxO3/ZrO2 [51] 650 1.5 264,000 3.60 

LaNiO3 [52] 700 1.5 120,000 3.90 

Ni/La2O3-αAl2O3 [53] 700 3.0 1,000 3.24 

Ni/Y2O3 [54] 650 4.2 10,000 5.25 

NixMgyO-Ce (This study) 700 3.0 200,000 4.82 
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Table 5 Raman spectra and key features of different catalysts after peak deconvolution. 

Catalysts Peak labela 
Peak position 

(cm-1) 
FWHM (cm-1) La (nm) 

NixMgyO 
D (65%) 1329 115 

2.7 
G (35%) 1596 67 

NixMgyO-Ce 
D (70%) 1334 51 

2.1 
G (30%) 1599 39 

a The values in parentheses represent the percentage area of each peak after deconvolution. 


