37 research outputs found

    21 cm foreground removal using AI and frequency-difference technique

    Full text link
    The deep learning technique has been employed in removing foreground contaminants from 21 cm intensity mapping, but its effectiveness is limited by the large dynamic range of the foreground amplitude. In this study, we develop a novel foreground removal technique grounded in U-Net networks. The essence of this technique lies in introducing an innovative data preprocessing step specifically, utilizing the temperature difference between neighboring frequency bands as input, which can substantially reduce the dynamic range of foreground amplitudes by approximately two orders of magnitude. This reduction proves to be highly advantageous for the U-Net foreground removal. We observe that the HI signal can be reliably recovered, as indicated by the cross-correlation power spectra showing unity agreement at the scale of k<0.3h−1k < 0.3 h^{-1}Mpc in the absence of instrumental effects. Moreover, accounting for the systematic beam effects, our reconstruction displays consistent auto-correlation and cross-correlation power spectrum ratios at the 1σ1\sigma level across scales kâ‰Č0.1h−1k \lesssim 0.1 h^{-1}Mpc, with only a 10% reduction observed in the cross-correlation power spectrum at k≃0.2h−1k\simeq0.2 h^{-1}Mpc. The effects of redshift-space distortion are also reconstructed successfully, as evidenced by the quadrupole power spectra matching. In comparison, our method outperforms the traditional Principal Component Analysis method, which derived cross-correlation ratios are underestimated by around 75%. We simulated various white noise levels in the map and found that the mean cross-correlation ratio Rˉcross≳0.75\bar{R}_\mathrm{cross} \gtrsim 0.75 when the level of the thermal noise is smaller than or equal to that of the HI signal. We conclude that the proposed frequency-difference technique can significantly enhance network performance by reducing the amplitude range of foregrounds and aiding in the prevention of HI loss.Comment: 18 pages, 16 figure

    Is ChatGPT a Good NLG Evaluator? A Preliminary Study

    Full text link
    Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.Comment: Both first authors contributed equally. Technical Report, 11 pages. Accepted to the 4th New Frontiers in Summarization Workshop (NewSumm@EMNLP 2023

    Any-Precision Deep Neural Networks

    Full text link
    We present any-precision deep neural networks (DNNs), which are trained with a new method that allows the learned DNNs to be flexible in numerical precision during inference. The same model in runtime can be flexibly and directly set to different bit-widths, by truncating the least significant bits, to support dynamic speed and accuracy trade-off. When all layers are set to low-bits, we show that the model achieved accuracy comparable to dedicated models trained at the same precision. This nice property facilitates flexible deployment of deep learning models in real-world applications, where in practice trade-offs between model accuracy and runtime efficiency are often sought. Previous literature presents solutions to train models at each individual fixed efficiency/accuracy trade-off point. But how to produce a model flexible in runtime precision is largely unexplored. When the demand of efficiency/accuracy trade-off varies from time to time or even dynamically changes in runtime, it is infeasible to re-train models accordingly, and the storage budget may forbid keeping multiple models. Our proposed framework achieves this flexibility without performance degradation. More importantly, we demonstrate that this achievement is agnostic to model architectures and applicable to multiple vision tasks. Our code is released at https://github.com/SHI-Labs/Any-Precision-DNNs.Comment: AAAI 202

    Relieving Effect of Rosa roxburghii Tratt. Juice Fermented by Lactobacillus paracasei SR10-1 on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice

    Get PDF
    Objective: To investigate the protective effect of Rosa roxburghii Tratt. juice (RRTJ) fermented by Lactobacillus paracasei SR10-1 against ulcerative colitis (UC) in mice. Methods: SR10-1 fermented Rosa roxburghii Tratt. juice was prepared in the laboratory. A mouse model of UC induced by dextran sulfate sodium (DSS) was created. The experiments were designed using five groups, i.e., blank control, DSS-induced model, positive control (mesalazine), lactic acid bacteria fermented RRTJ (LAB-RRTJ) and RRTJ. Disease activity index (DAI) score, visceral organ indices, colon length, colon pathological changes, the levels of inflammatory factors including interleukin (IL)-1ÎČ, IL-6, IL-10, IL-17A, tumor necrosis factor-α (TNF-α) and interferon-Îł (IFN-Îł), the levels of oxidative stress indicators including malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH), the activity of myeloperoxidase (MPO), and the expression levels of gut barrier-related genes (claudin-3, ZO-1 and MUC2) were analyzed in UC mice. Results: Compared with the DSS-induced model group, LAB-RRTJ significantly reduced the DAI score (P < 0.05), and relieved diarrhea, bloody stools, colonic atrophy and pathological changes of mice. In addition, the colon length was significantly increased (P < 0.001), and the spleen and liver indices were significantly decreased (P < 0.001 and P < 0.05, respectively). The levels of IL-1ÎČ, IL-6, IL-17A, TNF-α, and IFN-Îł were significantly decreased (P < 0.05), while the level of IL-10 was significantly increased (P < 0.05). The levels of MDA and MPO were significantly decreased (P < 0.05), the activities of SOD and GSH were significantly increased (P < 0.001 and P < 0.05), and the expression levels of claudin-3, ZO-1 and MUC2 were significantly increased (P < 0.01). Conclusion: Fermented Rosa roxburghii Tratt. juice with Lactobacillus paracasei SR10-1 could reduce intestinal damage in UC mice by improving inflammatory responses and regulating the level of oxidative stress and intestinal barrier function

    Testing Electron-phonon Coupling for the Superconductivity in Kagome Metal CsV3Sb5\rm{CsV_3Sb_5}

    Full text link
    In crystalline materials, electron-phonon coupling (EPC) is a ubiquitous many-body interaction that drives conventional Bardeen-Cooper-Schrieffer superconductivity. Recently, in a new kagome metal CsV3Sb5\rm{CsV_3Sb_5}, superconductivity that possibly intertwines with time-reversal and spatial symmetry-breaking orders is observed. Density functional theory calculations predicted weak EPC strength,λ\lambda, supporting an unconventional pairing mechanism in CsV3Sb5\rm{CsV_3Sb_5}. However, experimental determination of λ\lambda is still missing, hindering a microscopic understanding of the intertwined ground state of CsV3Sb5\rm{CsV_3Sb_5}. Here, using 7-eV laser-based angle-resolved photoemission spectroscopy and Eliashberg function analysis, we determine an intermediate λ\lambda=0.45~0.6 at T=6 K for both Sb 5p and V 3d electronic bands, which can support a conventional superconducting transition temperature on the same magnitude of experimental value in CsV3Sb5\rm{CsV_3Sb_5}. Remarkably, the EPC on the V 3d-band enhances to λ\lambda~0.75 as the superconducting transition temperature elevated to 4.4 K in Cs(V0.93Nb0.07)3Sb5\rm{Cs(V_{0.93}Nb_{0.07})_3Sb_5}. Our results provide an important clue to understand the pairing mechanism in the Kagome superconductor CsV3Sb5\rm{CsV_3Sb_5}.Comment: To appear in Nature Communication

    Robotstyrning med VÀgenintegrerad PolitikförbÀttring och Djupa Dynamik Modeller

    No full text
    Robotics is an interdisciplinary field that integrates computer science, electrical engineering, mechanical engineering, control engineering and other related fields. As the quick development of these fields, people have been building more complex robots with more advanced control strategies in order to solve more challenging tasks. In addition, it is always a target for researchers to achieve autonomous operation of robots so that the manpower can be saved and the robot can work in harsh environment like on Mars. In this project, I focus on the trajectory planning problem of a unicycle model running in 2D environment. I choose Path Integral Policy Improvement (PI2) control algorithm in this project as the main study object. And Model Predictive Control (MPC) is chosen as a reference in order to be compared with PI2 to evaluate the performance of PI2. In order to simulate the tasks that the robot needs to handle in practice, I use obstacles to represent the complex environment and I use Signal Temporal Logic (STL) to represent the complex tasks. Furthermore, I also incorporate the deep dynamics model in the project so that the the method put forward in this project is able to handle complex robot models and complex working environments. To evaluate the performances of PI2 and MPC, five criteria are put forward in this project. Finally, based on the evaluation results, possible improvement and future research are proposed. Robotics Àr ett tvÀrvetenskapligt omrÄde som integrerar datavetenskap, elektroteknik, maskinteknik, styrteknik och andra relaterade omrÄden. Som den snabba utvecklingen av dessa fÀlt har mÀnniskor byggt mer komplexa robotar med mer avancerade kontrollstrategier för att lösa mer utmanande uppgifter. Dessutom Àr det alltid ett mÄl för forskare att uppnÄ autonom drift av robotar sÄ att arbetskraften kan sparas och roboten kan arbeta i tuffa miljöer som pÄ Mars. I det hÀr projektet fokuserar jag pÄ banplaneringsproblemet för en enhjulingsmodell som körs i 2D-miljö. Jag vÀljer Path Integral Policy Improvement (PI2) kontrollalgoritm i detta projekt som huvudstudieobjekt. Och Model Predictive Control (MPC) vÀljs som referens för att kunna jÀmföras med PI2 för att utvÀrdera prestandan för PI2. För att simulera de uppgifter som roboten behöver hantera i praktiken anvÀnder jag hinder för att representera den komplexa miljön och jag anvÀnder Signal Temporal Logic (STL) för att representera de komplexa uppgifterna. Dessutom införlivar jag ocksÄ den djupa dynamikmodellen i projektet sÄ att metoden som lÀggs fram i detta projekt kan hantera komplexa robotmodeller och komplexa arbetsmiljöer. För att utvÀrdera prestanda för PI2 och MPC presenteras fem kriterier i detta projekt. Slutligen, baserat pÄ utvÀrderingsresultaten, föreslÄs möjliga förbÀttringar och framtida forskning
    corecore