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Abstract

This thesis presents two deep neural architectures which apply the Siamese Neural Network

sharing model parameters for learning a semantic similarity metric between two sentences.

In addition, two different similarity metrics (i.e., the Cosine Similarity and Manhattan

similarity) are compared based on these two architecture. Our experiments in binary

similarity classification for sentence pairs (in both English and Chinese) show that the

proposed Siamese BERT architecture with Manhattan similarity achieves the best per-

formance. More specifically, for the Chinese tasks, the Siamese BERT architecture with

Manhattan similarity outperforms the baselines (i.e., the Siamese Long Short-Term Mem-

ory architecture and the Siamese Bidirectional Long Short-Term Memory architecture) and

he Siamese CNN architecture in term of accuracy by 8.74, 8.75 and 0.07 points, respectively.

In this case, the Siamese CNN architecture achieves almost the same performance with the

Siamese BERT architecture, which suggests a strong advantage with a lighter structure.
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Chapter 1

Introduction

Measuring the similarity between words, sentences, paragraphs and documents is an im-

portant component in various tasks such as information retrieval, document clustering,

word-sense disambiguation, automatic essay scoring, short answer grading, machine trans-

lation and text summarization. Traditional sentence similarity measurement is based on

the edit distance, Jaccard index, and the bag-of-words models such as TF-IDF. These

methods of learning sentence similarity are in fact based on the word level, which may not

be sufficient. For example, there are two Chinese sentences as shown in Figure 1. The

corresponding English translations are“How to buy LCD TVs.”and“What kind of LCD

TVs is good?”. From the word level (i.e., character level in Chinese), the two sentences look

the same, but they have totally different meaning at the sentence level. That is, we need

sentence-level methods to capture the semantics of the sentences for sentence similarity

measurement.

With the rapid development of machine learning, using neural network to learn represen-

tations of sentence-level meanings has been widely verified to be effective. The beginning

of using neural network to learn sentence-level representations may be the Word2Vec from

Google [1], which used a shallow structure to learn the vector-based representations of

sentence level. However, using one neural architecture to learn two sentences in two steps

may cause inconsistent representations. Hence, Siamese structures, which can learn two

sentences at a time, are attractive alternatives. The Siamese architecture that can achieve

state-of-the-art accuracy results in learning English sentence similarity is a Bidirectional

Long Short-Term Memory (Bi-LSTM) based Siamese recurrent architecture [2].

In our preliminary study, we tested the effectiveness of a Siamese recurrent architecture

for learning Chinese sentence similarities. However, this did not perform as well as what is

reported by Neculoiu et al. [2]. Therefore, we tried different Siamese architectures including

the convolutional one inspired from the image processing field [3] and Bidirectional Encoder

Representations from Transformers (BERT) [4] one to implement sentence similarity learn-

ing. The results in binary similarity classification for sentence pairs show that the proposed
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Siamese architectures outperform the Siamese recurrent architecture in learning accuracy.

In addition, we consider two similarity metrics in each Siamese architecture, namely, the

Manhattan similarity and the Cosine similarity. The results show that a Siamese architec-

ture plus the Manhattan similarity performs better than other baselines for learning the

similarity between two sentences.

Our contributions are as follows: (1) we verified Siamese BERT is the best architecture

(except for the case of using cosine similarity for Chinese); (2) we verified that the Manhat-

tan similarity can achieve better performance than other similarity metrics regardless of the

learning architectures; (3) particularly, we verified that Siamese convolutional architecture

is effective in learning Chinese sentence semantic similarity.

The structure of this thesis is as follows: in Chapter 2, we listed the current Siamese

architectures; in Chapter 3, we illustrated our Saimese architecture by using convolutional

neural network (CNN) and BERT, respectively; in Chapter 4, we showed the datasets and

experiment setups; finally, in Chapter 5, we displayed the similarity accuracy learned by

the proposed Saimese methods.

6



Chapter 2

Related Work

The Siamese network [5] is firstly proposed for non-linear metric learning with similarity

information. It naturally learns representations that embody the invariance and selectivity

desiderata through explicit information about similarity between pairs of objects. The

Siamese architecture has since been widely used in vision applications. Specifically, the

Siamese convolutional networks were used to learn complex similarity metrics for face

verification [6] and dimensionality reduction on image features [7]. While in the natural

language processing (NLP) field, the Convolutional Neural Network (CNN) has attracted

more attentions since the successes in using CNN to do the traditional NLP tasks [8], and

the availability of high-quality semantic word representations has been verified when using

the CNN [1].

Recently, CNNs have been applied to matching sentences [9]. Although the work [9]

has used the CNN to learn representations of two sentences, this is not a Siamese CNN

architecture. Following this, the Siamese Long Short-Term Memory (LSTM) architecture

was proposed for sentence similarity task using token level embedding [10]. Subsequently,

a Siamese Bi-LSTM structure was proposed in order to improve the result of sentence sim-

ilarity [2]. A Siamese CNN combines Bi-LSTM structure has been proposed for learning

sentence similarity [11]. However, this architecture achieves lower accuracy than the inde-

pendent Bi-LSTM structure. Also, Pontes et al. [11] did not give any comparisons between

Siamese CNN architecture and Siamese Bi-LSTM architecture. Later, Siamese LSTM and

Siamese Bi-LSTM were compared based on an English dataset [12].





Chapter 3

Proposed Methods

3.1 Siamese Architecture
The proposed Siamese architecture is depicted in Fig. 3.1. In the architecture, there are

two exactly alike encoder structures that are used. The inputs of each encoder are the

world-level (for English) or character-level (for Chinese) embeddings of a sentence, and the

outputs of each encoder structure are the sentence level representations. Then, a similarity

metric is used to compare the outputs of the two convolutional structures. The calculated

similarity is the final output of the Siamese architecture.

怎样买液晶电视？(How to buy an LCD TV?)

!!(#) !%(#) !!(#) !&(#)… !!(') !%(') !((') !!)(')…

怎样的液晶电视才好(What is a good LCD TV)

怎 样 买 ？ 怎 样 的 好

"!# − %(#) − %(') *

&

%(#) %(')

Encoder

How to buy ?

…

…

Encoder

What is a TV…

Fig. 3.1: A Siamese architecture.

The similarity depicted in Fig. 3.1 is the exponential negative norm of two learned rep-

resentation vectors, which is defined as:

simMan = exp (−
∥∥∥f (a) − f (b)

∥∥∥
n
) (3.1)
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where in equation manhattan similarity f (a) and f (b) are the representations of the two

sentences from the two encoder structures. If n = 1, the similarity is the Manhattan

distance-based similarity or the Manhattan similarity for short. If n = 2, the similarity

is then the Euclidean distance-based similarity or the Euclidean similarity for short. We

have also tested the performance of the Siamese network with Euclidean similarity. The

accuracy is around 50%, which means the Euclidean similarity does not work well with the

Siamese architecture. Therefore, this result is not shown in Chapter 5. The similarity can

also be replaced by the Cosine similarity.

simCos =
(f (a) · f (b))∥∥f (a)

∥∥ ·
∥∥f (b)

∥∥ (3.2)

After calculating the similarity, we then use the mean-square error (MSE) of the similarity

and the label as the loss function. The gradients of the loss will be fed back to both encoder

structures. In this way, the two encoder structures will share the same parameters, and

then they can learn the representations of the two sentences with the same distribution.

Based on a threshold of the similarity, we can then evaluate the accuracy after learning.

3.2 Alternative Encoder
We adopted CNN and BERT as the candidate encoder. Note that for the Siamese

architecture, encoder can be various according to the effectiveness.

3.2.1 CNN Encoder

The specific CNN encoder is shown in Fig. 3.2. Within each CNN encoder structure, there

are one fully connected layer after three repeated convolutional layers and max pooling

layers. Note that the number of the repeated parts can be adjusted. However, we have

also tested the six repeated structure, the accuracy did not show a significant improvement.

That is to say, the 3-layer CNN is sufficient to show effectiveness with acceptable complexity.

The kernel size of each convolutional layer is different. A higher convolutional layer is

equipped with a larger kernel size. The fully connected layer then reduces the dimension

of the learned representations from pooling layer. The learned output vector from the fully

connected layer will be used to calculate the similarity then.

3.2.2 BERT Encoder

The specific BERT encoder is shown in Fig. 3.3. BERT basically can be regarded as

a stack of multiple Transformer encoders [13], which is an encoder-decoder network that

uses self-attention in the encoder and attention in the decoder. BERT has three embed-

dings: token embeddings, segment embeddings and positional embeddings. According to
10
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𝑥!
(#) 𝑥%

(#) 𝑥!
(#) 𝑥&

(#)…

Convolutional Layer 

Max Pooling

Fully Connected Layer

×3

𝑓 (#)Convolutional 
structure

Fig. 3.2: A CNN encoder for the Siamese architecture.

!!(#) !%(#) !!(#) !&(#)…

Input Embedding

Multi-Head Attention

Add & Norm

×12

BERT structure

Feed Forward

Add & Norm

Positional 
Encoding

Inputs

%(#)

Fig. 3.3: A BERT encoder for the Siamese architecture.

Vaswani et al. [13], the novel positional embedding is adopted according to multiple trials.

BERT varies in two scales, BERT_Base and BERT_Large. BERT_Base has 12 layers,

and BERT_Large has 24 layers in the encoder stack. In addition to use the Transformer

architecture with 6 encoder layers described in the original paper, the BERT architec-

ture (Base and Large) also has a larger feedforward network (768 and 1024 hidden units,

respectively) and more attention points (12 and 16, respectively). Moreover, it contains

512 hidden units and 8 attention heads. BERT_Base contains 110M parameters, while

BERT_Large has 340M parameters.

11
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Different from the CNN that can be customized, according to the aforementioned BERT

encoder structure, the parameters of which is almost deterministic. Besides, BERT has

the pre-training using two unsupervised tasks: masked language model and next sentence

prediction. Thus, when we use BERT, we use the pre-trained BERT model (with param-

eters) and fine tune the model by the specific supervised task (i.e., the similarity learning

in this thesis). Similar to the CNN encoder, the output of the BERT encoder is used for

the similarity calculation.

12



Chapter 4

Experiments

4.1 Dataset
Our experiments are the binary similarity classification tasks for sentence pairs for both

English and Chinese. In a specific dataset, a data record is always like <sentence 1, sentence

2, similarity> (i.e., 1 represents that the two sentences are similar and 0 represents that

two sentences are dissimilar). Although obtaining a Chinese sentence similarity dataset

is difficult, we found a dataset named LCQMC with even distribution of the labels (i.e.,

similar sentence pairs and dissimilarity sentence pairs occupy 50% and 50% of all dataset

respectively) from Baidu. The format of the dataset is shown in Fig. 4.1. Punctuations of

some sentences are omitted in the original data. This dataset consists 283,000 data records.

We have chosen 250,000 data records as the training data, and 12,500 data records as the

test data. Note that, LCQMC was open-source when we executed the experiment, however

when the thesis publish, LCQMC will be no longer open. We also used the English dataset

PAWS-X [14] to train and test the different Saimese architecture as the comparisons. In

the PAWS-X, the data format is the same with LCQMC, and the task is also to learn the

semantic similarity between two sentences. We used 49,401 data records in PAWS-X to

train models and 2,000 to test. The dataset statistics are shown in Table. 4.1.

Table 4.1: Overview of datasets

Datasets # of class Training/test size Language

LCQMC 2 250,000/12,500 CH

PAWS-X 2 49,401/2,000 EN

4.2 Baseline
From the aforementioned related works [2] [12], we have chosen two baselines: the Siamese

Bi-LSTM architecture and the Siamese LSTM architecture. When performing the baselines
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Record Sentence 1 Sentence 2 Label

1
三星手机屏幕是不是最好的？

Is the screen of Samsung
mobile phone the best or not?

三星手机的屏幕是不是都很好

Are the screens of all kinds of
Samsung mobile all good?

0

2
广西桂林电子科技大学怎么样?

How about the Guilin University
of Electronic Technology in
Guangxi ?

桂林电子科技大学怎么样

How about the Guilin
University of Electronic
Technology ?

1

3 支付宝钱包怎么用

How to use Alipay?

支付宝钱包怎么样

How about Alipay?

0

…… …… ……
……

Fig. 4.1: The format of the LCQMC.

for English dataset, to improve the performance lower-bound of the Siamese LSTM and

Bi-LSTM architectures, we introduced Glove [15] as the embedding. We did not choose

a specific embedding for Chinese because that there is still no a well-recognized Chinese

embedding library. Moreover, we also evaluated the two baselines, the Siamese BERT

architecture and the Siamese CNN architecture with two different loss functions (i.e., the

Manhattan similarity based MSE and the Cosine distance based MSE).

4.3 Setup
We used BERT_Base and adopted the original embeddings of BERT model for both

Chinese and English. As for the Siamese CNN architecture, the kernel sizes of the three

repeated convolutional layers are set as 3, 4 and 5. When using Siamese CNN architecture

for English, we also adopted the Glove.

For each Siamese architecture with different encoder, we ran a total of 100 epochs. The

batch size of Siamese CNN architecture and Siamese BERT architecture is 128 and 16,

respectively. The difference in the batch size is a consideration of the computing power

limitation. The Adam optimizer is used. During the optimization, we set the learning rate

to be 0.001 for Siamese CNN and 2× e−5 for Siamese BERT.

Following previous work [2], we used accuracy as the evaluation metric. We then set the

similarity threshold as 0.5. That is to say, if the calculated similarity is more than 0.5, the

prediction is that the two sentences are similar. Conversely, the similarity less than 0.5 is

decided as dissimilar.If the similarity is exactly 0.5, the result is excluded for calculating

accuracy.

The specific information of computing resources we used for the experiment is shown in

14



4.3 Setup

Table. 4.2

Table 4.2: Environment of Experiments

CPU Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz

Memory Size 32GB

GPU Nvidia Geforce RTX 1080ti

GPU Memory Size 11GB

15





Chapter 5

Results and Discussions

We first, in Section 5.1 and Section 5.2, showed detailed learning loss and accuracy of

each architecture for the Chinese sentence similarity learning task. Then, in Section 5.3,

we overall compared the learning results of the Chinese and English dataset. Additionally,

we gave a brief discussion for the results in Section 5.4.

5.1 Result of Siamese CNN

Siamese CNN + Manhattan

Siamese BiLSTM + Manhattan

Siamese LSTM + Manhattan

Siamese CNN + Cosine

Siamese BiLSTM + Cosine

Siamese LSTM + Cosine

L
o

s
s

0.05

0.10

0.15

0.20

0.25

Epoch

0 20 40 60 80 100

Fig. 5.1: The convergences and the losses of the Siamese CNN architectures and the

baselines.

In Fig. 5.1, we compared the convergence speeds and losses of all combinations of the

Siamese architectures (with CNN, Bi-LSTM and LSTM as the encoder) and the two loss

functions (i.e., using Manhattan or Cosine similarity). The lines in different colors represent

different Siamese architectures. The full lines are the losses using the Manhattan similarity,

and the dotted lines are the losses using the Cosine similarity. It can be observed that no
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matter what kind of the Siamese architecture is used, the Manhattan similarity based

Siamese architectures converge fast. As for the final loss, the Siamese CNN architectures

always achieve lower losses than the baselines. In the Siamese CNN architectures, the

Manhattan similarity based Siamese architecture always gets a lower loss. As a result, the

Siamese CNN architecture with the Manhattan similarity metric achieves the lowest loss.

Regardless of the choice the similarity metric, the losses of the Siamese LSTM architecture

and the Siamese Bi-LSTM architecture are similar.

Siamese CNN + Manhattan

Siamese BiLSTM + Manhattan

Siamese LSTM + Manhattan

Siamese CNN + Cosine

Siamese BiLSTM + Cosine

Siamese LSTM + Cosine

A
c
c
u

ra
c
y

0.55

0.60

0.65

0.70

0.75

Epoch

0 20 40 60 80 100

Fig. 5.2: The accuracies of the Siamese CNN architectures and the baselines.

Next, we evaluated the accuracy of all the combinations of the Siamese architectures

(with CNN, Bi-LSTM and LSTM as the encoder) and the two loss functions (i.e., using

Manhattan or Cosine similarity). The representation formats of different combinations

are the same with Fig. 5.1. As shown in Fig. 5.2, it can be seen that the Siamese CNN

architectures always achieve higher accuracy. In the Siamese convolutional architectures,

the one with the Manhattan similarity metric always achieves higher accuracy. In summary,

the Siamese CNN architecture with the Manhattan similarity metric can obtain the highest

accuracy. The performances of the two baselines are not substantially different regardless

of the similarity metric. The Siamese Bi-LSTM architecture shows a slight improvement

of the accuracy comparing to the Siamese LSTM architecture.

5.2 Result of Siamese BERT
In Fig. 5.3, we additionally compared the convergence speeds and losses of all combina-

tions of the three Siamese architectures (BERT, Bi-LSTM and LSTM) and the two loss
18
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functions (i.e., using Manhattan or Cosine similarity). The representation of lines is the

same as that in Fig. 5.1. It shows that the convergence is extremely fast when using

Siamese BERT architecture. However, unlike the significant difference in Siamese CNN

architecture, the convergence of using Manhattan similarity and Cosine similarity almost

is equally fast. Moreover, we see that the final loss of the Cosine similarity-based Siamese

BERT is just slightly lower than that of the Manhattan similarity-based Siamese BERT.

Siamese BERT + Manhattan

Siamese BiLSTM + Manhattan

Siamese LSTM + Manhattan

Siamese BERT + Cosine

Siamese BiLSTM + Cosine

Siamese LSTM + Cosine

L
o

s
s

0

0.1

0.2

Epoch

0 20 40 60 80 100

Fig. 5.3: The convergences and the losses of the Siamese BERT architectures and the

baselines.

Similarly, we evaluated the accuracy of all the combinations of the Siamese architectures

(with BERT, Bi-LSTM and LSTM as the encoder) and the two loss functions (i.e., using

Manhattan or Cosine similarity). The representation formats of different combinations

are the same with Fig. 5.1. In Fig. 5.4, it first can be seen that the accuracy of Siamese

BERT grows significantly fast. The Manhattan similarity-based Siamese BERT architec-

ture achieves the highest accuracy, however, the performance difference is not significant

when compared to the Cosine similarity-based one. the one with the Manhattan similarity

metric always achieves higher accuracy. We also can find a peak in the curve painted in

blue solid line, where the accuracy is over 80%. It may suggest that when the epoch is

set to be larger, the higher accuracy will be obtained by the Manhattan similarity-based

Siamese BERT architecture.

19
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Siamese BERT + Manhattan

Siamese BiLSTM + Manhattan

Siamese LSTM + Manhattan

Siamese BERT + Cosine

Siamese BiLSTM + Cosine

Siamese LSTM + Cosine

A
c
c
u

ra
c
y

0.5

0.6

0.7

0.8

Epoch

0 20 40 60 80 100

Fig. 5.4: The accuracies of the Siamese BERT architectures and the baselines.

5.3 Summary of the Results
We listed all the experimental results in the Table 1, including using LCQMC dataset

and PAWS-X dataset. It can be observed that when using LCQMC dataset, the Siamese

BERT architecture with Manhattan similarity achieves the best learning accuracy. How-

ever, when using Cosine similarity as the metric, the Siamese CNN even outperforms the

Siamese BERT architecture. The performance difference between the Siamese CNN and

Siamese BERT architecture is not significant. More specifically, with the metric of Manhat-

tan similarity, the Siamese BERT architecture outperforms the Siamese CNN, the Siamese

Bi-LSTM and the Siamese LSTM architecture by 0.07 points, 8.74 and 8.75 points, respec-

tively. In addition, with the metric of Cosine similarity, our Siamese CNN architecture

outperforms the Siamese BERT, Siamese Bi-LSTM and the Siamese LSTM architecture by

0.56, 16.50 and 17.03 points, respectively. It suggests that for a Chinese sentence similarity

learning task, the Siamese CNN architecture is strongly effective. Note that as a CNN is

much lighter (i.e., the scale of the parameters) than the BERT, it seems that the Siamese

CNN is always the first candidate regardless of the metrics.

On the other hand, for the PAWS-X (the English dataset), the Siamese BERT archi-

tecture still shows powerful performance. The performance gap between Siamese BERT

and other architectures is significantly wide, even when the baselines adopted the Glove

embedding. However, the Siamese LSTM architecture and Siamese Bi-LSTM architecture

outperform Siamese CNN architecture.

20



5.4 Discussion

Dataset Architecture Man. Similarity Cos. Similarity

Sia. BERT architecture 77.38 76.49

LCQMC Sia. CNN architecture 77.31 77.05

Sia. Bi-LSTM architecture 68.64 60.55

Sia. LSTM architecture 68.63 60.02

Sia. BERT architecture 76.25 73.70

PAWS-X Sia. CNN architecture 57.80 56.41

Sia. Bi-LSTM architecture 67.75 69.20

Sia. LSTM architecture 68.14 67.45

Table 5.1: Accuracy comparison for different architectures with Manhattan and Cosine

similarities.

5.4 Discussion
Through result analysis, it can be found that Siamese BERT has high performance and

wide generalization ability due to the advantage for the BERT encoder. When using the

BERT as the encoder in the Siamese architecture, the metric seems to be not so essential.

Note that such advantage is partially from the huge number of parameters. However, for

a Chinese task, the Siamese CNN also shows significantly strong performance (as good

as the BERT encoder). Nevertheless, the Siamese CNN has weak generalization ability,

that is, it performs bad for the English task. The performance discrepancy of the Siamese

CNN architecture between Chinese and English may because that part of the CNN can do

character-level encoding for Chinese. This is also why in some Chinese language tasks [16]

[17], a CNN-based character-level encoder is added before the word-level or sentence-level

encoding.

In recent years, to find an advantage of using BERT is not a big news. However, we found

that the CNN as an encoder in the Siamese architecture performs as strong as BERT for

the Chinese task, which is an interesting discovery.
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Chapter 6

Conclusion

In this thesis, we proposed a Siamese BERT and a Siamese CNN architecture for sentence

similarity learning tasks. The experiment show several essential results:

• The Siamese BERT achieves the highest accuracy in the following cases: a Chinese

task with Manhattan similarity as the metric, English tasks with both Manhattan

similarity and Cosine similarity as the metric.

• The Siamese BERT and the Siamese CNN outperform the baselines when conducting

the Chinese tasks.

• For the Chinese tasks, the performance of the Siamese CNN and the Siamese BERT

architecture is almost the same; in the case of taking Cosine similarity as the metric,

the Siamese CNN even slightly outperforms the Siamese BERT architecture.

• For the English tasks, in contrast, the Siamese CNN underperforms the baselines.

According to the aforementioned results, we can draw the following main conclusions:

• The Siamese BERT architecture has good performance and strong generalization

ability because of the well-designed BERT architecture.

• The Siamese CNN architecture has a significant advantage in a Chinese sentence

similarity learning task. It defeats the advantage from the BERT structure using

less parameters.

• The Siamese CNN architecture is not good for an English sentence similarity learning

task even using the Glove.

Additionally, Manhattan similarity metric always can help to achieve faster convergence

and higher accuracy than any other similarity metric. We may also suggest that the

Siamese architectures which are effective in English NLP tasks may not necessarily work

well in Chinese NLP tasks. We should do more works for the language differences.





Chapter 7

Future Work

In the future, we will try to build and conduct experiments on Siamese Transformer [18]

architecture. In addition, we will design more comparative experiment to try to explain

the reason why same architecture performs differently for tasks in different languages.

Moreover, we will use more sentence similarity corpus to pre-train the BERT and use the

pre-trained BERT model to build the Siamese BERT architecture to further improve the

performance.
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